期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Investigation on activated semi-coke desulfurization 被引量:7
1
作者 SHANGGUANJu LIZhuan-li LIChun-hu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第1期91-94,共4页
An activated semi coke with industrial scale size was prepared by high pressure hydrothermal chemistry activation, HNO 3 oxidation and calcination activation in proper order from Inner Mongolia Zhalainuoer semi coke, ... An activated semi coke with industrial scale size was prepared by high pressure hydrothermal chemistry activation, HNO 3 oxidation and calcination activation in proper order from Inner Mongolia Zhalainuoer semi coke, which is rich in resource and cheap in sale. SO 2 adsorption capacity on this activated semi coke was assessed in the fixed bed in the temperature range of 60—170℃, space velocity range of 500—1300 h -1 , SO 2 concentration of 1000—3000 ppmv, and N 2 as balance. The surface area, elemental and proximate analysis for both raw semi coke and activated semi cokes were measured. The experimental results showed that the activated semi coke has a high adsorption capacity for sulfur dioxide than the untreated semi coke. This may be the result of increase of surface area on activated semi coke and surface oxygen functional groups with basicity characteristics. Comparison to result of FTIR, it is known that group of —C—O—C? ?may be active center of SO 2 catalytic adsorption on activated semi coke. 展开更多
关键词 activated semi-coke high pressure hydrothermal chemistry ACTIVATION DESULFURIZATION
下载PDF
Impact of impregnation pressure on desulfurization performance of Zn-based sorbents supported on semi-coke 被引量:10
2
作者 Xianrong Zheng Weiren Bao +3 位作者 Qingmai Jin Ruiyuan He Liping Chang Kechang Xie 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2012年第1期56-60,共5页
High-pressure impregnation, a new preparation method for sorbents to remove H2S from hot coal gas, is introduced in this paper. Semi-coke (SC) and ZnO is selected as the support and active component of sorbent, resp... High-pressure impregnation, a new preparation method for sorbents to remove H2S from hot coal gas, is introduced in this paper. Semi-coke (SC) and ZnO is selected as the support and active component of sorbent, respectively. The sorbent preparation process includes high-pressure impregnation, filtration, ovendry and calcination. The aim of this research is to primarily study the effects of the impregnation pressure on physical properties and desulfurization ability of the sorbent. The desulfurization experiment was carried out in a fixed-bed reactor at 500 ~C and a simulated coal gas used in this work was composed of CO (33 vol%), H2 (39 vol%), H2S (300 ppm in volume), and N2 (balance). Experimental results show that the pore structure of the SC support can be improved effectively and ZnO active component can be uniformly dispersed on the support, with the small particle size of 10-500 nm. Sorbents prepared using high-pressure impregnation have better desulfurization capacity and their active components have higher utilization rate. P20-ZnSC sorbent, obtained by high-pressure impregnation at 20 atm, has the best desulfurization ability with a sulfur capacity of 7.54 g S/100g sorbent and a breakthrough time of 44 h. Its desulfurization precision and efficiency of removing H2S from the middle temperature gases can reach 〈 1 ppm and 〉99.7%, respectively, before sorbent breakthrough. 展开更多
关键词 DESULFURIZATION high-pressure impregnation method semi-coke support ZnO sorbent
下载PDF
Effects of ultrasound on the desulfurization performance of hot coal gas over Zn-Mn-Cu supported on semi-coke sorbent prepared by high-pressure impregnation method 被引量:4
3
作者 Xiaoyang Zhang Xianrong Zheng +2 位作者 Peng Han Ze Liu Liping Chang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第3期291-298,共8页
Zn-Mn-Cu/SC(U) sorbent was hydrothermally synthesized by ultrasound-assisted high-pressure impregnation method with semi-coke(SC)as support and the mixed solution of zinc nitrate,manganese nitrate and copper nitra... Zn-Mn-Cu/SC(U) sorbent was hydrothermally synthesized by ultrasound-assisted high-pressure impregnation method with semi-coke(SC)as support and the mixed solution of zinc nitrate,manganese nitrate and copper nitrate as active component precursors.The desulfurization performances of hot coal gas on the prepared sorbent at a mid-temperature of 500°C were tested in fixed-bed reactor.Morphology and pore structure of the prepared sorbent were also characterized by TEM,N2adsorption/desorption isotherms and XRD.For comparison,the sorbent of Zn-Mn-Cu/SC prepared by conventional high-pressure impregnation was also evaluated and characterized in order to study the effects of ultrasound treatment.Zn-Mn-Cu/SC(U) sorbent prepared by high-pressure impregnation under ultrasound-assisted condition showed a better desulfurization performance than Zn-Mn-Cu/SC.It could remove H2 S from 1000×10-6m3/m3 to 0.1×10-6m3/m3 at 500°C and maintained for 12.5 h with the sulfur capacity of 7.74%,in which both the breakthrough time and sulfur capacity were about 32% and 51% higher than those of Zn-Mn-Cu/SC sorbent.The introduction of ultrasound during high-pressure impregnation process greatly improved the morphology and pore structure of the sorbent.The ultrasonic treatment made particle size of active components smaller and made them more evenly disperse on semi-coke support,which provided more opportunities to contact with H2S in coal-based gases.However,there were no any difference in compositions and existing forms of active components on the Zn-Mn-Cu/SC and Zn-Mn-Cu/SC(U) sorbents. 展开更多
关键词 ultrasound-assistance high-pressure impregnation mid-temperature desulfurization Zn-Mn-Cu sorbent semi-coke support
下载PDF
Effects of process parameters on pore structure of semi-coke prepared by solid heat carrier with dry distillation 被引量:20
4
作者 Zhou, Guoli Wu, Jianjun +5 位作者 Miao, Zhenyong Hu, Xuelian Li, Xia Shi, Xin Cai, Zhidan Shang, Yukun 《International Journal of Mining Science and Technology》 SCIE EI 2013年第3期423-427,共5页
The semi-coke was prepared by solid heat carrier with dry distillation in single factor method. The pore structures of raw coal and semi-coke were characterized by Brunauer-Emmett-Teller (BET) and scanning electron mi... The semi-coke was prepared by solid heat carrier with dry distillation in single factor method. The pore structures of raw coal and semi-coke were characterized by Brunauer-Emmett-Teller (BET) and scanning electron microscope (SEM). The results show that the adsorption and desorption isotherm of semi-coke are not coincident. There was a wide pore distribution on the semi-coke, in which mesopores and micropores account for a considerable proportion. Also there are many more secondary pores. With the increase of the final temperature of heat carrier and constant temperature, as well as the decrease of volume ratio of coal and hot carrier reactor, specific surface area and pore volume of semi-coke increased rapidly first and then decreased and finally increased, along with the rapidly reduction of average pore size. SEM photos show that the surface of semi-coke becomes increasingly rough and glossy. 展开更多
关键词 semi-coke Pore structure Heat carrier dry distillation BET SEM
下载PDF
兰炭改性及其对甲基橙吸附性能研究 被引量:1
5
作者 时文 王洋 +2 位作者 章琛 刘毅 魏凤玉 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2017年第11期1547-1551,共5页
文章采用氯化锌水溶液对废弃的兰炭末进行改性,研究了改性兰炭末对水溶液中甲基橙(MO)吸附性能的影响,并探讨其吸附机理。结果表明:改性兰炭末对MO的吸附量随着温度升高而降低,吸附为放热过程,在298K时达372.1mg/g;吸附等温线呈S型,不... 文章采用氯化锌水溶液对废弃的兰炭末进行改性,研究了改性兰炭末对水溶液中甲基橙(MO)吸附性能的影响,并探讨其吸附机理。结果表明:改性兰炭末对MO的吸附量随着温度升高而降低,吸附为放热过程,在298K时达372.1mg/g;吸附等温线呈S型,不是一个简单的单分子层吸附,低质量浓度的MO溶液在改性兰炭末上的吸附符合Freundlich模型,高质量浓度时则符合BET多分子层吸附;准二级动力学方程可较好地描述其吸附动力学过程,颗粒内扩散是吸附速率控制步骤,表观活化能Ea为19.21kJ/mol。 展开更多
关键词 改性兰炭末 甲基橙 吸附 热力学 动力学 modified fine semi-coke(MFSC) METHYL orange(MO)
下载PDF
Mercury oxidation and adsorption characteristics of potassium permanganate modified lignite semi-coke 被引量:13
6
作者 Huawei Zhang Jitao Chen +1 位作者 Peng Liang Li Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2012年第12期2083-2090,共8页
The adsorption characteristics of virgin and potassium permanganate modified lignite semi-coke (SC) for gaseous Hg were investigated in an attempt to produce more effective and lower price adsorbents for the control... The adsorption characteristics of virgin and potassium permanganate modified lignite semi-coke (SC) for gaseous Hg were investigated in an attempt to produce more effective and lower price adsorbents for the control of elemental mercury emission. Brunauer-Emmett- Teller (BET) measurements, X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to analyze the surface physical and chemical properties of SC, Mn-SC and Mn-H-SC before and after mercury adsorption. The results indicated that potassium permanganate modification had significant influence on the properties of semi-coke, such as the specific surface area, pore structure and surface chemical functional groups. The mercury adsorption efficiency of modified semi-coke was lower than that of SC at low temperature, but much higher at high temperature. Amorphous Mn7+, Mn6+ and Mn4+ on the surface of Mn-SC and Mn-H-SC were the active sites for oxidation and adsorption of gaseous Hg~, which oxidized the elemental mercury into Hg2+ and captured it. Thermal treatment reduced the average oxidation degree of Mn2+ on the surface of Mn-SC from 3.80 to 3.46. However, due to the formation of amorphous MnOx, the surface oxidation active sites for gaseous Hg0 increased, which gave Mn-H-SC higher mercury adsorption efficiency than that of Mn-SC at high temperature. 展开更多
关键词 lignite semi-coke elemental mercury potassium permanganate modification removal efficiency
原文传递
Experimental Investigation for Co-Combustion Characteristics of Semi-Coke and Bituminous Coal in a 3 MWth Tangential Combustion Facility 被引量:2
7
作者 GUAN Jingyu YU Qiang +4 位作者 SUN Rui SHEN Tao WANG Minghao YAN Yanfei SONG Xin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第6期1655-1662,共8页
An experimental investigation was conducted in a 3 MW pilot-scale tangential combustion facility to explore the co-combustion characteristics of bituminous coal mixed with semi-coke.The thermal gravimetric analyzer(TG... An experimental investigation was conducted in a 3 MW pilot-scale tangential combustion facility to explore the co-combustion characteristics of bituminous coal mixed with semi-coke.The thermal gravimetric analyzer(TGA)was used to obtained fuel thermal analysis.The results presented effects of semi-coke blending ratio(BR)on average furnace temperature,ignition temperature,NO emission and combustion efficiency.The excess air coefficient in main combustion sections and outlet were fixed at 0.85 and 1.2 while BR increased from 0%to 50 wt.%.The temperature profiles of combustion decreases along the height of furnace while average furnace temperature fluctuates slightly with an increasing BR.The concentration of NO has an increasing tendency with the increasing of BR.The ignition temperature obtained from TGA measurement agreed well with experiment result.In addition,combustion efficiency was not sensitive to BR and decreased slightly with the increasing BR. 展开更多
关键词 tangential combustion semi-cokE blending ratio combustion characteristics experimental investigation
原文传递
Experimental and Numerical Study on Co-combustion Behaviors and NO_(x) Emission Characteristics of Semi-coke and Coal in a Tangentially Fired Utility Boiler 被引量:2
8
作者 WANG Chang’an FENG Qinqin +7 位作者 JIN Liyan WANG Zhichao YAO Wei WANGPengqian DU Yongbo ZHANG Xilai YANG Zhongcan CHE Defu 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第4期1116-1131,共16页
The utilization of powdery semi-coke as a power fuel in pulverized coal-fired power plants has become a new and potential technique to consume the excess powdery semi-coke.The characteristic of low volatile results in... The utilization of powdery semi-coke as a power fuel in pulverized coal-fired power plants has become a new and potential technique to consume the excess powdery semi-coke.The characteristic of low volatile results in poor combustion performance and high NO_(x) emission,and to co-fire with bituminous coal is a practical strategy to address this problem.However,the co-combustion characteristics and the inherent interaction between semi-coke and coal remain insufficiently understood.In addition,the influences of secondary air arrangement,the boiler operation load,and the fuel type on co-combustion process are still unclear,which is urgent to be further explored.In the present study,experiments and numerical simulations were jointly utilized to inquire into the co-combustion behaviors and NO_(x) emission features of semi-coke and coal.The results demonstrated that the"out-furnace method"was a suitable choice for small-capacity boiler when the proportion of semi-coke was 33%,due to the limited combinations of the semi-coke injection position.It was recommended that semi-coke was preferred to be injected from the middle layers of the furnace under the"in-furnace method"to improve the overall co-combustion performance.The critical value of the separated over fire air ratio in this study was 27.5%,over which a slight drop of carbon content in fly ash could come about.Moreover,the elevation in the proportion of separated over fire air gave rise to the significant decline of NO_(x) concentration.The constricted secondary air arrangement was preferred to be employed due to the high boiler efficiency.The separated over fire air and the surrounding air needed to maintain a wide-open degree to prevent the increase of NO_(x) emissions and the coking of nozzles.For the load reduction regulation method adopted in this study,the NO_(x) concentration first rose and then dropped,while the burnout ratio decreased obviously as the operation load was reduced.Different combinations of coal and semi-coke generated significant influences on co-combustion behaviors within the furnace.The NO_(x )generated by high-volatile fuel (bituminous coal) combustion was mainly affected by volatile-N,while the NO_(x )generated by low-volatile fuel (semi-coke) was mainly impacted by char-N.This study is of guiding significance for the efficient and clean utilization and beneficial to the large-scale application of powder semi-coke in power plants. 展开更多
关键词 semi-cokE numerical simulation CO-COMBUSTION NOx emission blending method
原文传递
Experimental research on semi-coke for blast furnace injection 被引量:1
9
作者 Chun-chao Huang Xiao-jun Ning +3 位作者 Guang-wei Wang Jian-liang Zhang Zheng-fu Peng Hai-peng Teng 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2021年第4期391-401,共11页
The combustion properties and grindability of Shenmu low-rank coal(SM)and its four different semi-cokes were studied by the self-designed equipment and Hardgrove method.The four semi-cokes were obtained under the pyro... The combustion properties and grindability of Shenmu low-rank coal(SM)and its four different semi-cokes were studied by the self-designed equipment and Hardgrove method.The four semi-cokes were obtained under the pyrolysis temperature of 400,500,600 and 700℃,named as SM-400,SM-500,SM-600 and SM-700,respectively.The analyses of nitrogen adsorp-tion,Fourier-transform infrared spectroscopy(FTIR)spectra and Raman spectra were carried out to explain the change in combustion ratio and grindability.The result showed that the specific surface area of samples had an essential effect on the combustion ratio of SM-400 and SM-500.Meanwhile,the grindability depended on the strength of coal matrix,and the augment of pore amounts would increase the grindability.The functional groups and graphitization degree of the same sam-ple were identical with the combustion ratio.With the pyrolysis upgrading temperature increasing,the combustion ratio of sample decreased,corresponding to the decrease in the benzene ring and the increase in graphitization degree.In addition,the thermogravimetric analysis was carried out,and the result was compared against what was shown in the data of com-bustion ratio.For pulverized coal injection,the combustion ratio was more intuitive and more accurate than combustibility. 展开更多
关键词 semi-cokE Combustion ratio Functional group Graphitization degree GRINDABILITY
原文传递
Comparison of semi-coke with traditional pulverized coal injection and iron ore sintering fuels based on chemical structure and combustion behavior 被引量:1
10
作者 Jiang-yong He Chong Zou +3 位作者 Jun-xue Zhao Dong Liang Jia-le Xi Cheng Ma 《Journal of Iron and Steel Research(International)》 SCIE EI CSCD 2022年第5期725-740,共16页
Substantial semi-coke has been produced through the industrialized low-temperature pyrolysis process,which has great potential as an alternative fuel for pulverized coal injection(PCI)and iron ore sintering.X-ray diff... Substantial semi-coke has been produced through the industrialized low-temperature pyrolysis process,which has great potential as an alternative fuel for pulverized coal injection(PCI)and iron ore sintering.X-ray diffraction,Raman spectroscope,and thermal analysis were used to compare the carbon chemical structure and combustion reactivity of semi-coke,pulverized coal,and coke breeze.The results show that the average volatile matter content in 46 types of semi-cokes is 8.94 wt.%.The fluctuation range of the characteristic parameters of the semi-coke chemical structure is d_(002)=(0.352–0.379)nm and A_(D1)/A_(G)=(2.51–7.92),while the fluctuation range of the characteristic parameters of pulverized coal is d_(002)=(0.348–0.373)nm and A_(D1)/A_(G)=(1.71–9.03)(where d_(002)means the interlayer spacing between the aromatic planes,and A_(D1)/A_(G)is an index that characterizes the degree of disorder of the char structure through the area ratio of the defect peak band D1 to the perfect graphite peak band G);the overlap between these ranges is relatively high.Contrarily,the fluctuation range of the characteristic parameters of coke breeze is d_(002)=(0.343–0.350)nm and A_(D1)/A_(G)=(0.75–2.51),which is markedly different from that of semi-coke.Semi-coke combustion reactivity is close to that of pulverized coal,but considerably better than that of coke breeze.In terms of chemical structure and combustion reactivity,semi-coke can be used as an alternative fuel for PCI;however,when used for sintering alternative fuel,matching of the heat supply and demand in the later sintering stage must be scrupulously analyzed. 展开更多
关键词 semi-cokE COKE Blast furnace Pulverized coal injection COMBUSTION
原文传递
Effect of oil shale semi-coke on deposit mineralogy and morphology in the flue path of a CFB burning Zhundong lignite
11
作者 Zhuo LIU Jianbo LI +3 位作者 Mingming ZHU Xiaofeng LU Zhezi ZHANG Dongke ZHANG 《Frontiers in Energy》 SCIE CSCD 2021年第1期26-37,共12页
The effect of oil shale semi-coke(SC)on the mineralogy and morphology of the ash deposited on probes situated in the flue path of a circulating fluidized bed(CFB)which burns Zhundong lignite(ZD)was investigated.10 wt%... The effect of oil shale semi-coke(SC)on the mineralogy and morphology of the ash deposited on probes situated in the flue path of a circulating fluidized bed(CFB)which burns Zhundong lignite(ZD)was investigated.10 wt%or 20 wt%SC was added to ZD,which were then combusted in the CFB furnace at 950℃.Two probes with vertical and horizontal orientations were installed in the flue duct to simulate ash deposition.Both windward and leeward ash deposits on probes(P_(1)W,P_(1)L,P_(2)W and P_(2)L)were analyzed by using a scanning electron microscopy with energy dispersive X-ray(SEM-EDX),X-ray diffraction(XRD),an inductively coupled plasma optical emission spectrometry ICP-OES,and a particle size analyzer.When ZD was burned alone,the P1W deposit was comprised of agglomerates(<30µm)enriched in CaSO_(4)and Na_(2)SiO_(3),incurring significant sintering.The P1L and P2W deposits,however,were of both discrete and agglomerated particles in similar mineral phases but with coarser sizes.The P_(2)L deposit was mainly fine ash particles where Na_(2)SiO_(3)and Na_(2)SO_(4)were absent.As SC was added,the agglomerates in both P1W and P1L decreased.Moreover,SiO_(2)and Ca/Na aluminosilicates dominated the mineral phases whereas Na_(2)SiO_(3)and Na_(2)SO_(4)disappeared,showing a decrease in deposit stickiness.Likewise,the P2W deposit was found less spread on the probe,decreasing its deposition propensity.Na-bearing minerals turned into(Na,K)(Si_(3)Al)O_(8)and(Ca,Na)(Si,Al)4O8 in the P_(2)W deposit.Moreover,Na in the deposits decreased from 32 mg/g to less than 15 mg/g as SC presented.The addition of SC would therefore help alleviate the propensity of ash deposition in the flue path in the CFB combustion of ZD. 展开更多
关键词 ash deposition circulating fluidized bed(CFB) mineral transformation oil shale semi-coke(SC) Zhundong lignite(ZD)
原文传递
Synthesis of biochar/clay mineral nanocomposites using oil shale semi-coke waste for removal of organic pollutants
12
作者 Feng Zhao Bin Mu +4 位作者 Tenghe Zhang Chunjuan Dong Yongfeng Zhu Li Zong Aiqin Wang 《Biochar》 SCIE CAS 2023年第1期123-143,共21页
Due to the poor surface/interfacial interaction and the large gaps in the size and microstructure between biomass and clay mineral,it was difficult to adjust the structure and performance of biochar/clay mineral compo... Due to the poor surface/interfacial interaction and the large gaps in the size and microstructure between biomass and clay mineral,it was difficult to adjust the structure and performance of biochar/clay mineral composites at the molecular level.Herein,oil shale semi-coke composed of multi-minerals and organic matters was used as a promising precursor to prepare biochar/clay mineral nanocomposites via phosphoric acid-assisted hydrothermal treatment followed by KOH activation for removal of organic pollutants from aqueous solution.The results revealed that the nanocomposites presented well-defined sheet-like morphology,and the carbon species uniformly anchored on the surface of clay minerals.With the changes in the pore structure,surface charge and functional groups after two-step modification,the nanocomposites exhibited much better adsorption property toward organic pollutants than the raw oil shale semi-coke,and the maximum adsorption capacities of methylene blue,methyl violet,tetracycline,and malachite green were 165.30 mg g^(−1),159.02 mg g^(−1),145.89 mg g^(−1),and 2137.36 mg g^(−1),respectively.The adsorption mechanisms involved electrostatic attraction,π-πstacking and hydrogen bonds.After five consecutive adsorption-desorption,there was no obvious decrease in the adsorption capacity of malachite green,exhibiting good cyclic regeneration performance.It is expected to provide a feasible strategy for the preparation of biochar/clay mineral nanocomposites with the excellent adsorption performances for removal of organic pollutants based on full-component resource utilization of oil shale semi-coke. 展开更多
关键词 Oil shale semi-coke Clay mineral Biochar nanocomposites Adsorption mechanism Solid waste resource utilization
原文传递
Impacts of fuel feeding methods on the thermal and emission performance of modern coal burning stoves
13
作者 Riaz Ahmad Yuguang Zhou +5 位作者 Nan Zhao Crispin Pemberton-Pigott Harold John Annegarn Muhammad Sultan Renjie Dong Xinxin Ju 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2019年第3期160-167,共8页
The extensive use of traditional cooking and heating stoves to meet domestic requirements creates a serious problem of indoor and outdoor air pollution.This study reports the impacts of two fuel feeding methods-front-... The extensive use of traditional cooking and heating stoves to meet domestic requirements creates a serious problem of indoor and outdoor air pollution.This study reports the impacts of two fuel feeding methods-front-loading and top-loading on the thermal and emissions performance of a modern coal-fired water-heating and cooking stove using a contextual test sequence that replicates typical patterns of domestic use.Known as a low-pressure boiler,when this stove was fueled with raw coal,the findings indicate that front-loading the fuel,which devolatilizes the new fuel gradually,produced consistently higher space heating efficiency and lower emission factors than top-loading the same stove,which devolatilizes new fuel all at once.Comparing the performance at both high and low power gave the similar results:front-loading with raw coal produced consistently better results than top-loading.The average water heating efficiency when front-loading was(58.6±2.3)%and(53.4±1.8)%for top-loading.Over the sixteen-hour test sequence,front-loading produced 22%lower emissions of PM2.5(3.9±0.6)mg/MJNET than top-loading(4.7±0.9)mg/MJNET.The same pattern was observed for carbon monoxide and the CO/CO2 ratio.CO was reduced from(5.0±0.4)g/MJNET to(4.1±0.5)g/MJNET.The combustion efficiency(CO/CO2 ratio)improved from(8.2±0.8)%to(6.6±0.6)%.Briquetted semi-coked coal briquettes are promoted as a raw coal substitute,and the tests were replicated using this fuel.Again,the same pattern of improved performance was observed.Front loading produced 3.5%higher heating efficiency,10%lower CO and a 0.9%lower CO/CO2 ratio.It is concluded that,compared with top loading,the manufacturers recommended front-loading refueling behavior delivered better thermal,emissions and combustion performance under all test conditions with those two fuels. 展开更多
关键词 stoves front-loading top-loading REFUELING domestic coal thermal efficiency PM2.5 emissions semi-coked coal briquettes
原文传递
Novel eco-friendly spherical porous adsorbent fabricated from Pickering middle internal phase emulsions for removal of Pb(Ⅱ) and Cd(Ⅱ) 被引量:1
14
作者 Hui Yu Yongfeng Zhu +1 位作者 Aiping Hui Aiqin Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第2期320-330,共11页
Spherical porous materials prepared from the emulsion template used in the water treatment have displayed a vast prospect, as the high surface area, abundant porous structure, convenient operation and excellent adsorp... Spherical porous materials prepared from the emulsion template used in the water treatment have displayed a vast prospect, as the high surface area, abundant porous structure, convenient operation and excellent adsorption performance. But the tedious fabrication process, high consumption of organic solvent and surfactant limited the application widely. Herein, a facile and eco-friendly spherical porous adsorbent(SPA) is fabricated from the green surfactant-free(corn oil)-in-water Pickering medium internal phase emulsions(Pickering MIPEs) via the convenient ion crosslinking procedure. The Pickering MIPEs synergistically stabilized with the semi-coke(SC), which is the natural particle produced from the shale oil distillation, and sodium alginate(SA) has excellent storage and anti-coalescence stability. The as-prepared porous adsorbent possessed the abundant pore structure, which provided favorable conditions for effective mass transfer in adsorption, and could be tuned by varying the SA dosage. The saturation adsorption capacities of Pb(II) and Cd(II) can be achieved with 460.54 and 278.77 mg/g within 45 min at 25 ℃, respectively. Overall, this study supplied a viable and eco-friendly route for fabricating the spherical porous adsorbent with a tunable porous structure for heavy metal ion wastewater. 展开更多
关键词 Spherical porous adsorbent(SPA) Emulsion template semi-cokE Adsorption Heavy metal ion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部