Based on the temperature situation during the rolling process of 4200 mm/3500 mm medium and thick plates at Baosteel,this article analyzes the influencing factors of temperature changes during the rolling process from...Based on the temperature situation during the rolling process of 4200 mm/3500 mm medium and thick plates at Baosteel,this article analyzes the influencing factors of temperature changes during the rolling process from the perspective of heat transfer theory and the temperature change law during the rolling process.The temperature loss during the four rolling processes is tracked on site,and the temperature drop model parameters during the rolling process of 4200mm/3500mm medium and thick plates at Baosteel are quantitatively provided.It is applied to actual rolling production and has achieved good results.展开更多
The microstructure development of Pd77.5Au6Si16.5 alloy droplet solidified in a drop tube process was studied. It was found that two distinct microstructures, i.e. (Pd,Au)3Si primary phase and Pd+(Pd,Au)3Si eutectic c...The microstructure development of Pd77.5Au6Si16.5 alloy droplet solidified in a drop tube process was studied. It was found that two distinct microstructures, i.e. (Pd,Au)3Si primary phase and Pd+(Pd,Au)3Si eutectic can be obtained when the droplet diameter is within the range between 2.3~0.4 mm. The morpologies of the (Pd,Au)3Si developed from dendrite trunk-like with single branching only into dendrite cluster-like with ternary branching with the decrease of the droplet diameter. When the droplet diameter is about 0.25 mm, the primary phase (Pd,Au)3Si almost disappears and the microstructure mainly shows Pd+(Pd,Au)3Si eutectic. The morphology of the eutectic transforms from fiber-like to plate-like with the decrease of the droplet diameter in the range between 2.3-0.25 mm. When the droplet diameter is about 0.19 mm, the microstructure is only the single phase of Pd solid solution展开更多
Data collected using the micro rain radar(MRR) situated in Jinan city, eastern China, were used to explore the altitudinal and temporal evolution of rainfall microphysical characteristics, and to analyze the bright ba...Data collected using the micro rain radar(MRR) situated in Jinan city, eastern China, were used to explore the altitudinal and temporal evolution of rainfall microphysical characteristics, and to analyze the bright band(BB) characteristics and hydrometeor classification. Specifically, a low-intensity and stable stratiform precipitation event that occurred from 0000 to0550 UTC 15 February 2015 and featured a BB was studied. During this event, the rainfall intensity was less than 2 mm h-1 at a height of 300 m, which was above the radar site level, so the errors caused by the vertical air motion could be ignored.The freezing height from the radiosonde matched well with the top of the BB observed by the MRR. It was also found that the number of 0.5–1 mm diameter drops showed no noticeable variation below the BB. The maximum fall velocity and the maximum gradient fall velocity(GFV) of the raindrops appeared at the bottom of the BB. Meanwhile, a method that uses the GFV and reflectivity to identify the altitude and the thickness of the BB was established, with which the MRR can provide a reliable and real-time estimation of the 0?C isotherm. The droplet fall velocity was used to classify the types of snow crystals above the BB. In the first 20 min of the selected precipitation event, graupel prevailed above the BB; and at an altitude of2000 m, graupel also dominated in the first 250 min. After 150 min, the existence of graupel and dendritic crystals with water droplets above the BB was inferred.展开更多
This study evaluates the improvement of the radar Quantitative Precipitation Estimation (QPE) by involving microphysical processes in the determination of </span><i><span style="font-family:Verdana...This study evaluates the improvement of the radar Quantitative Precipitation Estimation (QPE) by involving microphysical processes in the determination of </span><i><span style="font-family:Verdana;">Z</span></i><span style="font-family:Verdana;">-</span><i><span style="font-family:Verdana;">R</span></i><span style="font-family:Verdana;"> algorithms. Within the framework of the AMMA campaign, measurements of an X-band radar (Xport), a vertical pointing Micro Rain Radar (MRR) to investigate microphysical processes and a dense network of rain </span><span style="font-family:Verdana;">gauges deployed in Northern Benin (West Africa) in 2006 and 2007 were</span><span style="font-family:Verdana;"> used as support to establish such estimators and evaluate their performance compared to other estimators in the literature. By carefully considering and correcting MRR attenuation and calibration issues, the </span><i><span style="font-family:Verdana;">Z</span></i><span style="font-family:Verdana;">-</span><i><span style="font-family:Verdana;">R</span></i><span style="font-family:Verdana;"> estimator developed </span><span style="font-family:Verdana;">with the contribution of microphysical processes and non-linear least</span></span><span style="font-family:Verdana;">-</span><span style="font-family:""><span style="font-family:Verdana;">squares adjustment proves to be more efficient for quantitative rainfall estimation and produces the best statistic scores than other optimal </span><i><span style="font-family:Verdana;">Z</span></i><span style="font-family:Verdana;">-</span><i><span style="font-family:Verdana;">R</span></i><span style="font-family:Verdana;"> algorithms in the literature. We also find that it gives results comparable to some polarimetric algorithms including microphysical information through DSD integrated parameter retrievals.展开更多
文摘Based on the temperature situation during the rolling process of 4200 mm/3500 mm medium and thick plates at Baosteel,this article analyzes the influencing factors of temperature changes during the rolling process from the perspective of heat transfer theory and the temperature change law during the rolling process.The temperature loss during the four rolling processes is tracked on site,and the temperature drop model parameters during the rolling process of 4200mm/3500mm medium and thick plates at Baosteel are quantitatively provided.It is applied to actual rolling production and has achieved good results.
文摘The microstructure development of Pd77.5Au6Si16.5 alloy droplet solidified in a drop tube process was studied. It was found that two distinct microstructures, i.e. (Pd,Au)3Si primary phase and Pd+(Pd,Au)3Si eutectic can be obtained when the droplet diameter is within the range between 2.3~0.4 mm. The morpologies of the (Pd,Au)3Si developed from dendrite trunk-like with single branching only into dendrite cluster-like with ternary branching with the decrease of the droplet diameter. When the droplet diameter is about 0.25 mm, the primary phase (Pd,Au)3Si almost disappears and the microstructure mainly shows Pd+(Pd,Au)3Si eutectic. The morphology of the eutectic transforms from fiber-like to plate-like with the decrease of the droplet diameter in the range between 2.3-0.25 mm. When the droplet diameter is about 0.19 mm, the microstructure is only the single phase of Pd solid solution
基金sponsored by the National Natural Science Foundation of China (Grant Nos. 41475028 and 41530427)
文摘Data collected using the micro rain radar(MRR) situated in Jinan city, eastern China, were used to explore the altitudinal and temporal evolution of rainfall microphysical characteristics, and to analyze the bright band(BB) characteristics and hydrometeor classification. Specifically, a low-intensity and stable stratiform precipitation event that occurred from 0000 to0550 UTC 15 February 2015 and featured a BB was studied. During this event, the rainfall intensity was less than 2 mm h-1 at a height of 300 m, which was above the radar site level, so the errors caused by the vertical air motion could be ignored.The freezing height from the radiosonde matched well with the top of the BB observed by the MRR. It was also found that the number of 0.5–1 mm diameter drops showed no noticeable variation below the BB. The maximum fall velocity and the maximum gradient fall velocity(GFV) of the raindrops appeared at the bottom of the BB. Meanwhile, a method that uses the GFV and reflectivity to identify the altitude and the thickness of the BB was established, with which the MRR can provide a reliable and real-time estimation of the 0?C isotherm. The droplet fall velocity was used to classify the types of snow crystals above the BB. In the first 20 min of the selected precipitation event, graupel prevailed above the BB; and at an altitude of2000 m, graupel also dominated in the first 250 min. After 150 min, the existence of graupel and dendritic crystals with water droplets above the BB was inferred.
文摘This study evaluates the improvement of the radar Quantitative Precipitation Estimation (QPE) by involving microphysical processes in the determination of </span><i><span style="font-family:Verdana;">Z</span></i><span style="font-family:Verdana;">-</span><i><span style="font-family:Verdana;">R</span></i><span style="font-family:Verdana;"> algorithms. Within the framework of the AMMA campaign, measurements of an X-band radar (Xport), a vertical pointing Micro Rain Radar (MRR) to investigate microphysical processes and a dense network of rain </span><span style="font-family:Verdana;">gauges deployed in Northern Benin (West Africa) in 2006 and 2007 were</span><span style="font-family:Verdana;"> used as support to establish such estimators and evaluate their performance compared to other estimators in the literature. By carefully considering and correcting MRR attenuation and calibration issues, the </span><i><span style="font-family:Verdana;">Z</span></i><span style="font-family:Verdana;">-</span><i><span style="font-family:Verdana;">R</span></i><span style="font-family:Verdana;"> estimator developed </span><span style="font-family:Verdana;">with the contribution of microphysical processes and non-linear least</span></span><span style="font-family:Verdana;">-</span><span style="font-family:""><span style="font-family:Verdana;">squares adjustment proves to be more efficient for quantitative rainfall estimation and produces the best statistic scores than other optimal </span><i><span style="font-family:Verdana;">Z</span></i><span style="font-family:Verdana;">-</span><i><span style="font-family:Verdana;">R</span></i><span style="font-family:Verdana;"> algorithms in the literature. We also find that it gives results comparable to some polarimetric algorithms including microphysical information through DSD integrated parameter retrievals.