The massive consumption of fossil energy force s people to find new source s of energy.Syngas fermentation has become a hot research field as its high potential in renewable energy production and sustainable developme...The massive consumption of fossil energy force s people to find new source s of energy.Syngas fermentation has become a hot research field as its high potential in renewable energy production and sustainable development.In this study,trophic anaerobic acetogen Morella thermoacetica was successfully immobilized by calcium alginate embedding method.The ability of the immobilized cells on production of acetic acid through syngas fermentation was compared in both airlift and bubble column bioreactors.The bubble column bioreactor was selected as the better type of bioreactor.The production of acetic acid reached 32.3 g·L^(-1) in bubble column bioreactor with a space-time yield of 2.13 g·L^(-1)·d^(-1).The immobilized acetogen could be efficiently reused without significant lag period,even if exposed to air for a short time.A semi-continuous syngas fermentation was performed using immobilized cells,with an average space-time acetic acid yield of 3.20 g·L^(-1)·d^(-1).After 30 days of fermentation,no significant decrea se of the acetic acid production rate was observed.展开更多
The factors selected to optimize the productivity of Pleurotus flabellatus biomass in 250ml working volume Erlenmeyer flask were agitation rate, initial pH value and incubation temperature. The central composite desig...The factors selected to optimize the productivity of Pleurotus flabellatus biomass in 250ml working volume Erlenmeyer flask were agitation rate, initial pH value and incubation temperature. The central composite design was applied to study the significant factors and the interactions between the chosen factors, if present. The Design Expert software generated 20 runs. The optimized conditions obtained were as follows: the agitation rate of 129.8 rpm, incubation temperature at 27.8°C, and initial pH of 6.06. The optimized conditions tripled the productivity at the range of 980 - 1040 mg/litre/day compared to the initial rate productivity at 310 mg/litre/day. From the quadratic equation,the agitation rate, temperature and the interaction between agitation rate and temperature were found to be significant (p < 0.05). At optimum conditions, the experimental data supported the theoretical estimate.展开更多
Tannase is a hydrolytic enzyme that is involved in the biodegradation of tannins and it has biotechnological potential in the pharmaceutical, chemical, food and beverage industries. Microorganisms, especially filament...Tannase is a hydrolytic enzyme that is involved in the biodegradation of tannins and it has biotechnological potential in the pharmaceutical, chemical, food and beverage industries. Microorganisms, especially filamentous fungi, are important tannase producers. The aims of this work were to find a potential tannase producer and to improve the cultivation conditions. Three Aspergillus species (A. japonicus 246A, A. tamarii 3 and Aspergillus sp. GM4) were investigated in different culture media (Adams, Czapeck, Khanna, M5 and Vogel) and inducers (1% and 2% tannic acid;1% green tea;1% methyl gallate;1% gallic acid). Aspergillus sp. GM4 and Adams medium were selected. The tannase production by Aspergillus sp. GM4 in Adams medium was induced in the presence of 2% (w/v) tannic acid and gallic acid as carbon sources, while green tea was not able to induce tannase production. The Plackett-Burman screening design was performed with the variables MgSO4, KH2PO4, yeast extract, tannic acid, agitation rate and salt solution. The variables MgSO4 and agitation rate were selected for the optimization of tannase production using a Central Composite Rotatable Design. Under optimized conditions, a 2.66-fold increase in the enzyme production was observed with small modifications in the medium composition.展开更多
Rotational speed, temperature, inoculation amount and pH are the four factors that affect the submerge fermentation of Agaricus blazei Murill. The orthogonal experiment was on the basis of single factor experiments. A...Rotational speed, temperature, inoculation amount and pH are the four factors that affect the submerge fermentation of Agaricus blazei Murill. The orthogonal experiment was on the basis of single factor experiments. And the optimal submerge fermentation condition of Agaricus blazei Murill was determined through orthogonal test. The results were as follows: temperature (25℃), rotational speed (150 r/min), inoculation amount (6%) and pH (7), in this condition the cell dry weight reached 1.32 g/100mL;temperature (25℃), rotational speed (150 r/min), inoculation amount (8%) and pH (6.5) in this condition the extracellular polysaccharide reached 6.95 mg/mL.展开更多
Lentinus squarrosulus Mont. is an emerging tropical white rot basidiomycete, with nutritional and medicinal benefits. Low levels of commercial cultivation of the mushrooms limit their availability for use as food and ...Lentinus squarrosulus Mont. is an emerging tropical white rot basidiomycete, with nutritional and medicinal benefits. Low levels of commercial cultivation of the mushrooms limit their availability for use as food and medicine. Mycelia from submerged fermentation are a suitable alternative to the mushroom from L. squarrosulus. Three strains, 340, 339 and 218, were studied to determine optimum growth conditions for mycelia mass and crude exo-polysaccharides (CEPS) production. The experiments were conducted in a completely randomized design (CRD) with a factorial structure. Nutrients involving 8 carbon and 8 nitrogen sources were screened, and concentrations of the best sources were optimized. Optimized nutrients, interaction between strains and other parameters such as agitation and medium volume were investigated to obtain optimum fermentation conditions for biomass and CEPS production. Biomass yield varied among strains depending on carbon or nitrogen nutrient sources. Starch and yeast extract at 30 and 25 g/L were identified as the most important nutrients in mycelia and CEPS production. Nutrient optimization resulted in a 3-fold increase in mycelia mass: 12.8, 10.0 and 15.3 g/L in strains 340, 339 and 218 respectively. There was a significant interaction between strain, agitation, and volume (p p = 0.02). Static conditions favored more polysaccharide production. Optimized fermentation conditions resulted in very high increase in biomass: 238.1, 266.9 and 185.0 g/L in strains 340, 339 and 218 respectively. Results obtained could be useful in modeling fermentation systems for large-scale production of mycelia mass, CEPS and other bio-products from L. squarrosulus.展开更多
Xylanase is an important enzyme with potential application in the degradation of xylan component in the lignocellulosic biomass. There are very few reports on the production of cellulase free xylanases especially by y...Xylanase is an important enzyme with potential application in the degradation of xylan component in the lignocellulosic biomass. There are very few reports on the production of cellulase free xylanases especially by yeast strains which have great potential in paper and pulp industry in removing the hemicellulose from the treated or untreated pulp. In this study, P. hubeiensis NCIM 3574 isolated in our laboratory produced significant levels of extracellular cellulase free xylanase (2480 IU/g DSS) in solid state fermentation (SSF) using wheat bran and xylan. It also produced high levels of β-xylosidase (198 IU/g DSS) when grown in SSF using ground nut oil cake and xylan. These highest activities were obtained when fermented Koji was extracted with 1% NaCl supplemented with 0.5% of Triton X-100. These are the highest activities reported so far from yeast strains in the available literature. The crude xylanase preparation of P. hubeiensis produced xylooligosaccharides (XOS) without xylose proving its potential for XOS production with no further requirement of downstream processing. The XOS as prebiotic show beneficial effect on gut microflora such as Lactobacilli and Bifidobacteria which suppress the activity of pathogenic organisms. This xylanase also has a potential application as a bio-bleaching agent in paper and pulp industry.展开更多
The present study focused on production of mycelial chitosan from fungal mycelium by submerged fermentation with ecologically more balanced process. Different fungal strains were screened and Absidia butleri NCIM 977 ...The present study focused on production of mycelial chitosan from fungal mycelium by submerged fermentation with ecologically more balanced process. Different fungal strains were screened and Absidia butleri NCIM 977 was found to produce the highest mycelial chitosan. The one-factor-at-a-time method was adopted to investigate the effect of batch time, environmental factors (i.e. initial pH and temperature) and medium components (i.e. carbon and nitrogen) on the yield of mycelial chitosan. Among these variables, the optimal condition to increase in yield of mycelial chitosan was found to be batch time (72 h), pH (5.5), temperature (30°C), carbon source (glucose) and nitrogen source (tryptone and yeast extract). Subsequently, a three-level Box– Behnken factorial design was employed combining with response surface methodology (RSM) to maximise yield of mycelial chitosan by determining optimal concentrations and investigating the interactive effects of the most significant media components (i.e. carbon and nitrogen sources). The optimum value of parameters obtained through RSM was glucose (1.58%), tryptone (1.61%) and yeast extract (1.11%). There was an increase in mycelial chitosan yield after media optimization by one-factor-at-a-time and statistical analysis from 683 mg/L to 1 g/L. Mycelial chitosan was characterized for total glucosamine content (80.68%), degree of deacetylation (DD) (79.89%), molecular weight (8.07 × 104 Da) and, viscosity (73.22 ml/g). The results of this study demonstrated that fungi are promising alternative sources of chitosan with high DD and high purity.展开更多
基金supported by the National Key Research and Development Program of China (2019YFA0905000)the National Natural Science Foundation of China (21536004, 21922804, 21776085, and 21871085)the Fundamental Research Funds for the Central Universities (22221818014)。
文摘The massive consumption of fossil energy force s people to find new source s of energy.Syngas fermentation has become a hot research field as its high potential in renewable energy production and sustainable development.In this study,trophic anaerobic acetogen Morella thermoacetica was successfully immobilized by calcium alginate embedding method.The ability of the immobilized cells on production of acetic acid through syngas fermentation was compared in both airlift and bubble column bioreactors.The bubble column bioreactor was selected as the better type of bioreactor.The production of acetic acid reached 32.3 g·L^(-1) in bubble column bioreactor with a space-time yield of 2.13 g·L^(-1)·d^(-1).The immobilized acetogen could be efficiently reused without significant lag period,even if exposed to air for a short time.A semi-continuous syngas fermentation was performed using immobilized cells,with an average space-time acetic acid yield of 3.20 g·L^(-1)·d^(-1).After 30 days of fermentation,no significant decrea se of the acetic acid production rate was observed.
文摘The factors selected to optimize the productivity of Pleurotus flabellatus biomass in 250ml working volume Erlenmeyer flask were agitation rate, initial pH value and incubation temperature. The central composite design was applied to study the significant factors and the interactions between the chosen factors, if present. The Design Expert software generated 20 runs. The optimized conditions obtained were as follows: the agitation rate of 129.8 rpm, incubation temperature at 27.8°C, and initial pH of 6.06. The optimized conditions tripled the productivity at the range of 980 - 1040 mg/litre/day compared to the initial rate productivity at 310 mg/litre/day. From the quadratic equation,the agitation rate, temperature and the interaction between agitation rate and temperature were found to be significant (p < 0.05). At optimum conditions, the experimental data supported the theoretical estimate.
文摘Tannase is a hydrolytic enzyme that is involved in the biodegradation of tannins and it has biotechnological potential in the pharmaceutical, chemical, food and beverage industries. Microorganisms, especially filamentous fungi, are important tannase producers. The aims of this work were to find a potential tannase producer and to improve the cultivation conditions. Three Aspergillus species (A. japonicus 246A, A. tamarii 3 and Aspergillus sp. GM4) were investigated in different culture media (Adams, Czapeck, Khanna, M5 and Vogel) and inducers (1% and 2% tannic acid;1% green tea;1% methyl gallate;1% gallic acid). Aspergillus sp. GM4 and Adams medium were selected. The tannase production by Aspergillus sp. GM4 in Adams medium was induced in the presence of 2% (w/v) tannic acid and gallic acid as carbon sources, while green tea was not able to induce tannase production. The Plackett-Burman screening design was performed with the variables MgSO4, KH2PO4, yeast extract, tannic acid, agitation rate and salt solution. The variables MgSO4 and agitation rate were selected for the optimization of tannase production using a Central Composite Rotatable Design. Under optimized conditions, a 2.66-fold increase in the enzyme production was observed with small modifications in the medium composition.
文摘Rotational speed, temperature, inoculation amount and pH are the four factors that affect the submerge fermentation of Agaricus blazei Murill. The orthogonal experiment was on the basis of single factor experiments. And the optimal submerge fermentation condition of Agaricus blazei Murill was determined through orthogonal test. The results were as follows: temperature (25℃), rotational speed (150 r/min), inoculation amount (6%) and pH (7), in this condition the cell dry weight reached 1.32 g/100mL;temperature (25℃), rotational speed (150 r/min), inoculation amount (8%) and pH (6.5) in this condition the extracellular polysaccharide reached 6.95 mg/mL.
文摘Lentinus squarrosulus Mont. is an emerging tropical white rot basidiomycete, with nutritional and medicinal benefits. Low levels of commercial cultivation of the mushrooms limit their availability for use as food and medicine. Mycelia from submerged fermentation are a suitable alternative to the mushroom from L. squarrosulus. Three strains, 340, 339 and 218, were studied to determine optimum growth conditions for mycelia mass and crude exo-polysaccharides (CEPS) production. The experiments were conducted in a completely randomized design (CRD) with a factorial structure. Nutrients involving 8 carbon and 8 nitrogen sources were screened, and concentrations of the best sources were optimized. Optimized nutrients, interaction between strains and other parameters such as agitation and medium volume were investigated to obtain optimum fermentation conditions for biomass and CEPS production. Biomass yield varied among strains depending on carbon or nitrogen nutrient sources. Starch and yeast extract at 30 and 25 g/L were identified as the most important nutrients in mycelia and CEPS production. Nutrient optimization resulted in a 3-fold increase in mycelia mass: 12.8, 10.0 and 15.3 g/L in strains 340, 339 and 218 respectively. There was a significant interaction between strain, agitation, and volume (p p = 0.02). Static conditions favored more polysaccharide production. Optimized fermentation conditions resulted in very high increase in biomass: 238.1, 266.9 and 185.0 g/L in strains 340, 339 and 218 respectively. Results obtained could be useful in modeling fermentation systems for large-scale production of mycelia mass, CEPS and other bio-products from L. squarrosulus.
文摘Xylanase is an important enzyme with potential application in the degradation of xylan component in the lignocellulosic biomass. There are very few reports on the production of cellulase free xylanases especially by yeast strains which have great potential in paper and pulp industry in removing the hemicellulose from the treated or untreated pulp. In this study, P. hubeiensis NCIM 3574 isolated in our laboratory produced significant levels of extracellular cellulase free xylanase (2480 IU/g DSS) in solid state fermentation (SSF) using wheat bran and xylan. It also produced high levels of β-xylosidase (198 IU/g DSS) when grown in SSF using ground nut oil cake and xylan. These highest activities were obtained when fermented Koji was extracted with 1% NaCl supplemented with 0.5% of Triton X-100. These are the highest activities reported so far from yeast strains in the available literature. The crude xylanase preparation of P. hubeiensis produced xylooligosaccharides (XOS) without xylose proving its potential for XOS production with no further requirement of downstream processing. The XOS as prebiotic show beneficial effect on gut microflora such as Lactobacilli and Bifidobacteria which suppress the activity of pathogenic organisms. This xylanase also has a potential application as a bio-bleaching agent in paper and pulp industry.
文摘The present study focused on production of mycelial chitosan from fungal mycelium by submerged fermentation with ecologically more balanced process. Different fungal strains were screened and Absidia butleri NCIM 977 was found to produce the highest mycelial chitosan. The one-factor-at-a-time method was adopted to investigate the effect of batch time, environmental factors (i.e. initial pH and temperature) and medium components (i.e. carbon and nitrogen) on the yield of mycelial chitosan. Among these variables, the optimal condition to increase in yield of mycelial chitosan was found to be batch time (72 h), pH (5.5), temperature (30°C), carbon source (glucose) and nitrogen source (tryptone and yeast extract). Subsequently, a three-level Box– Behnken factorial design was employed combining with response surface methodology (RSM) to maximise yield of mycelial chitosan by determining optimal concentrations and investigating the interactive effects of the most significant media components (i.e. carbon and nitrogen sources). The optimum value of parameters obtained through RSM was glucose (1.58%), tryptone (1.61%) and yeast extract (1.11%). There was an increase in mycelial chitosan yield after media optimization by one-factor-at-a-time and statistical analysis from 683 mg/L to 1 g/L. Mycelial chitosan was characterized for total glucosamine content (80.68%), degree of deacetylation (DD) (79.89%), molecular weight (8.07 × 104 Da) and, viscosity (73.22 ml/g). The results of this study demonstrated that fungi are promising alternative sources of chitosan with high DD and high purity.