Degree of freedom(DOF)is a key indicator for spatial multiplexing layers of a wireless channel.Traditionally,the channel of a multiple-input multiple-output(MIMO)half-wavelength dipole array has a DOF that equals the ...Degree of freedom(DOF)is a key indicator for spatial multiplexing layers of a wireless channel.Traditionally,the channel of a multiple-input multiple-output(MIMO)half-wavelength dipole array has a DOF that equals the antenna number.However,recent studies suggest that the DOF could be less than the antenna number when strong mutual coupling is considered.We utilize a mutual-coupling-compliant channel model to investigate the DOF of the holographic MIMO(HMIMO)channel and give a upper bound of the DOF with strong mutual coupling.Our numerical simulations demonstrate that a dense array can support more DOF per unit aperture as compared with a half-wavelength MIMO system.展开更多
A semi-classical scheme is presented to solve the coupled-channel cavity QED (CQED) model. Such model exhibits remarkable characteristics as shown by numerical calculations. A relation between the swing or angular vel...A semi-classical scheme is presented to solve the coupled-channel cavity QED (CQED) model. Such model exhibits remarkable characteristics as shown by numerical calculations. A relation between the swing or angular velocity of the detuning and the motion of the atoms is discussed. With the augmentation of the optical field intensity or frequency, the atoms are trapped firstly and then they move stochastically and finally chaos sets in.展开更多
Proton inelastic scatterings from several s-d shell nuclei are analyzed using optical potential model and collective model in Dirac coupled channel formalism. The optical potential parameters obtained phenomenological...Proton inelastic scatterings from several s-d shell nuclei are analyzed using optical potential model and collective model in Dirac coupled channel formalism. The optical potential parameters obtained phenomenologically for the scatterings from the s-d shell nuclei are compared with each other for systematic Dirac analysis. Dirac equations are reduced to the second-order differential equations in order to obtain the Schroedinger equivalent effective central and spin-orbit optical potentials, and the surface-peaked phenomena are observed at the real effective central potentials for the scatterings from 22Ne, 20Ne and 24Mg. By analyzing the obtained effective spin-orbit potentials, it is confirmed that the spin-orbit interaction is a surface-peaked interaction. The first-order rotational collective models are used to describe the low-lying excited states of the ground state rotational bands in the s-d shell deformed nuclei, and the obtained deformation parameters are analyzed by comparing with each other, and compared with those obtained by using the nonrelativistic calculations. The obtained deformation parameters of Dirac phenomenological calculations for the s-d shell nuclei are found to agree pretty well with those of the nonrelativistic calculations using the same Woods-Saxon potential shape, even though the theoretical bases are quite different.展开更多
In this paper,we have modeled a linear precoder for indoor multiuser multiple input multiple output(MU-MIMO)system with imperfect channel state information(CSI)at transmitter.The Rician channel is presumed to be mutua...In this paper,we have modeled a linear precoder for indoor multiuser multiple input multiple output(MU-MIMO)system with imperfect channel state information(CSI)at transmitter.The Rician channel is presumed to be mutually coupled and spatially,temporarily correlated.The imperfection with CSI is primarily due to the channel estimation error at receiver and feedback delay amidst the receiver and transmitter in CSI transmission.Along with,the insufficient spacing between the antenna at transmitter and receiver persuades mutual coupling(MC)among the array elements.In addition,the MIMO channel is presumed to be jointly correlated(Weichselberger correlation model).When we look back on the existing precoder design,it considered spatial correlation alone disregarding joint correlation of antenna array elements.With all above assumption,we have designed a linear precoder which minimizes mean squared error(MSE)subjected to total transmit power constraint for MUMIMO system.The simulation results proven that proposed precoder shows substantial enhancement in bit error rate(BER)performance in comparison with the existing technique.The mathematical analysis corroborates the simulation results.展开更多
A coupled one-dimensional (1-D) and two-dimensional (2-D) channel network mathematical model is proposed for flow calculations at nodes in a channel network system in this article. For the 1-D model, the finite di...A coupled one-dimensional (1-D) and two-dimensional (2-D) channel network mathematical model is proposed for flow calculations at nodes in a channel network system in this article. For the 1-D model, the finite difference method is used to discretize the Saint-Venant equations in all channels of a looped network. The Alternating Direction Implicit (ADI) method is adopted for the 2-D model at the nodes. In the coupled model, the 1-D model provides a good approximation with small computational effort, while the 2-D model is applied for complex topography to achieve a high accuracy. An Artificial Neural Network (ANN.) method is used for the data exchange and the connectivity between the 1-D and 2-D models. The coupled model is applied to the Jingjiang-Dongting Lake region, to simulate the tremendous looped channel network system, and the results are compared with field data. The good agreement shows that the coupled hydraulic model is more effective than the conventional 1-D model.展开更多
We present severM possible hadronic states found in coupled-channel models within the on-shell approx- imation. The interaction potential is constructed as a sum of the tree-level Feynman diagrams calculated with the ...We present severM possible hadronic states found in coupled-channel models within the on-shell approx- imation. The interaction potential is constructed as a sum of the tree-level Feynman diagrams calculated with the effective Lagrangians. Based on the recent empirical data, we illustrate the possible existence of severM baryonic and mesonic states with definite quantum numbers in the model. We give their properties for the purpose of further study and discuss the potential of finding them in future experiments.展开更多
In this work, we specify potential elements of the brain to sense and regulate the energy metabolism of the organism. Our numerical investigations base on neurochemical experiments demonstrating a biphasic association...In this work, we specify potential elements of the brain to sense and regulate the energy metabolism of the organism. Our numerical investigations base on neurochemical experiments demonstrating a biphasic association between brain glucose level and neuronal activity. The dynamics of high and low affine KATP channels are most likely to play a decisive role in neuronal activity. We develop a coupled Hodgkin-Huxley model describing the interactive behavior of inhibitory GABAergic and excitatory dopaminergic neurons projecting into the caudate nucleus. The novelty in our approach is that we include the synaptic coupling of GABAergic and dopaminergic neurons as well as the interaction of high and low affine KATP channels. Both are crucial mechanisms described by kinetic models. Simulations demonstrate that our new model is coherent with neurochemical in vitro experiments. Even experimental interventions with glibenclamide and glucosamine are reproduced by our new model. Our results show that the considered dynamics of high and low affine KATP channels may be a driving force in energy sensing and global regulation of the energy metabolism, which supports central aspects of the new Selfish Brain Theory. Moreover, our simulations suggest that firing frequencies and patterns of GABAergic and dopaminergic neurons are correlated to their neurochemical outflow.展开更多
基金supported in part by National Key Research and Develop⁃ment Program of China under Grant No.2020YFB1807600.
文摘Degree of freedom(DOF)is a key indicator for spatial multiplexing layers of a wireless channel.Traditionally,the channel of a multiple-input multiple-output(MIMO)half-wavelength dipole array has a DOF that equals the antenna number.However,recent studies suggest that the DOF could be less than the antenna number when strong mutual coupling is considered.We utilize a mutual-coupling-compliant channel model to investigate the DOF of the holographic MIMO(HMIMO)channel and give a upper bound of the DOF with strong mutual coupling.Our numerical simulations demonstrate that a dense array can support more DOF per unit aperture as compared with a half-wavelength MIMO system.
文摘A semi-classical scheme is presented to solve the coupled-channel cavity QED (CQED) model. Such model exhibits remarkable characteristics as shown by numerical calculations. A relation between the swing or angular velocity of the detuning and the motion of the atoms is discussed. With the augmentation of the optical field intensity or frequency, the atoms are trapped firstly and then they move stochastically and finally chaos sets in.
文摘Proton inelastic scatterings from several s-d shell nuclei are analyzed using optical potential model and collective model in Dirac coupled channel formalism. The optical potential parameters obtained phenomenologically for the scatterings from the s-d shell nuclei are compared with each other for systematic Dirac analysis. Dirac equations are reduced to the second-order differential equations in order to obtain the Schroedinger equivalent effective central and spin-orbit optical potentials, and the surface-peaked phenomena are observed at the real effective central potentials for the scatterings from 22Ne, 20Ne and 24Mg. By analyzing the obtained effective spin-orbit potentials, it is confirmed that the spin-orbit interaction is a surface-peaked interaction. The first-order rotational collective models are used to describe the low-lying excited states of the ground state rotational bands in the s-d shell deformed nuclei, and the obtained deformation parameters are analyzed by comparing with each other, and compared with those obtained by using the nonrelativistic calculations. The obtained deformation parameters of Dirac phenomenological calculations for the s-d shell nuclei are found to agree pretty well with those of the nonrelativistic calculations using the same Woods-Saxon potential shape, even though the theoretical bases are quite different.
文摘In this paper,we have modeled a linear precoder for indoor multiuser multiple input multiple output(MU-MIMO)system with imperfect channel state information(CSI)at transmitter.The Rician channel is presumed to be mutually coupled and spatially,temporarily correlated.The imperfection with CSI is primarily due to the channel estimation error at receiver and feedback delay amidst the receiver and transmitter in CSI transmission.Along with,the insufficient spacing between the antenna at transmitter and receiver persuades mutual coupling(MC)among the array elements.In addition,the MIMO channel is presumed to be jointly correlated(Weichselberger correlation model).When we look back on the existing precoder design,it considered spatial correlation alone disregarding joint correlation of antenna array elements.With all above assumption,we have designed a linear precoder which minimizes mean squared error(MSE)subjected to total transmit power constraint for MUMIMO system.The simulation results proven that proposed precoder shows substantial enhancement in bit error rate(BER)performance in comparison with the existing technique.The mathematical analysis corroborates the simulation results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10872110,10902061)
文摘A coupled one-dimensional (1-D) and two-dimensional (2-D) channel network mathematical model is proposed for flow calculations at nodes in a channel network system in this article. For the 1-D model, the finite difference method is used to discretize the Saint-Venant equations in all channels of a looped network. The Alternating Direction Implicit (ADI) method is adopted for the 2-D model at the nodes. In the coupled model, the 1-D model provides a good approximation with small computational effort, while the 2-D model is applied for complex topography to achieve a high accuracy. An Artificial Neural Network (ANN.) method is used for the data exchange and the connectivity between the 1-D and 2-D models. The coupled model is applied to the Jingjiang-Dongting Lake region, to simulate the tremendous looped channel network system, and the results are compared with field data. The good agreement shows that the coupled hydraulic model is more effective than the conventional 1-D model.
基金Supported by National Natural Science Foundation of China(11347146,11275235,11175220)
文摘We present severM possible hadronic states found in coupled-channel models within the on-shell approx- imation. The interaction potential is constructed as a sum of the tree-level Feynman diagrams calculated with the effective Lagrangians. Based on the recent empirical data, we illustrate the possible existence of severM baryonic and mesonic states with definite quantum numbers in the model. We give their properties for the purpose of further study and discuss the potential of finding them in future experiments.
基金the Graduate School for Computing in Medicine and Life Sciences at the University of Lubeck funded by the German Research Foundation[DFG GSC 235/1]for its support.
文摘In this work, we specify potential elements of the brain to sense and regulate the energy metabolism of the organism. Our numerical investigations base on neurochemical experiments demonstrating a biphasic association between brain glucose level and neuronal activity. The dynamics of high and low affine KATP channels are most likely to play a decisive role in neuronal activity. We develop a coupled Hodgkin-Huxley model describing the interactive behavior of inhibitory GABAergic and excitatory dopaminergic neurons projecting into the caudate nucleus. The novelty in our approach is that we include the synaptic coupling of GABAergic and dopaminergic neurons as well as the interaction of high and low affine KATP channels. Both are crucial mechanisms described by kinetic models. Simulations demonstrate that our new model is coherent with neurochemical in vitro experiments. Even experimental interventions with glibenclamide and glucosamine are reproduced by our new model. Our results show that the considered dynamics of high and low affine KATP channels may be a driving force in energy sensing and global regulation of the energy metabolism, which supports central aspects of the new Selfish Brain Theory. Moreover, our simulations suggest that firing frequencies and patterns of GABAergic and dopaminergic neurons are correlated to their neurochemical outflow.