The eigenvalue problem of an infinite-dimensional Hamiltonian operator appearing in the isotropic plane magnetoelectroelastic solids is studied. First, all the eigenvalues and their eigenfunctions in a rectangular dom...The eigenvalue problem of an infinite-dimensional Hamiltonian operator appearing in the isotropic plane magnetoelectroelastic solids is studied. First, all the eigenvalues and their eigenfunctions in a rectangular domain are solved directly. Then the completeness of the eigenfunction system is proved, which offers a theoretic guarantee of the feasibility of variable separation method based on a Hamiltonian system for isotropic plane magnetoelectroelastic solids. Finally, the general solution for the equation in the rectangular domain is obtained by using the symplectic Fourier expansion method.展开更多
Generalized functional separation of variables to nonlinear evolution equations is studied in terms of the extended group foliation method, which is based on the Lie point symmetry method. The approach is applied to n...Generalized functional separation of variables to nonlinear evolution equations is studied in terms of the extended group foliation method, which is based on the Lie point symmetry method. The approach is applied to nonlinear wave equations with variable speed and external force. A complete classification for the wave equation which admits functional separable solutions is presented. Some known results can be recovered by this approach.展开更多
By the separation of singularity, a special Fourier series solution of the boundary value problem for plane is obtained, which can satisfy all boundary conditions and converges rapidly. II is proved that the solution ...By the separation of singularity, a special Fourier series solution of the boundary value problem for plane is obtained, which can satisfy all boundary conditions and converges rapidly. II is proved that the solution is equal to the result of separation of variables. As a result, the non-linear characteristic equations resulting from the method of separation of variables are transformed into polynomial equations that can provide a foundation for approximate computation and asymptotic analysis.展开更多
By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ODE method is developed for solving the mKdV-sinh-Gordon equation. As a result, many explicit and exact sol...By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ODE method is developed for solving the mKdV-sinh-Gordon equation. As a result, many explicit and exact solutions including some new formal solutions are successfully picked up for the mKdV-sinh-Gordon equation by this approach.展开更多
In the paper, we will discuss the Kadomtsev-Petviashvili Equation which is used to model shallow-water waves with weakly non-linear restoring forces and is also used to model waves in ferromagnetic media by employing ...In the paper, we will discuss the Kadomtsev-Petviashvili Equation which is used to model shallow-water waves with weakly non-linear restoring forces and is also used to model waves in ferromagnetic media by employing the method of variable separation. Abundant exact solutions including global smooth solutions and local blow up solutions are obtained. These solutions would contribute to studying the behavior and blow up properties of the solution of the Kadomtsev-Petviashvili Equation.展开更多
By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equa...By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equation. As a result, many explicit and exact solutions of the (2 + 1)-dimensional sine-Poisson equation are derived in a simple manner by this technique.展开更多
Through analysing the exact solution of some nonlinear models, the role of the variable separating method in solving nonlinear equations is discussed. We find that rich solution structures of some special fields of th...Through analysing the exact solution of some nonlinear models, the role of the variable separating method in solving nonlinear equations is discussed. We find that rich solution structures of some special fields of these equations come from the nonzero seed solution. However, these nonzero seed solutions is likely to result in the divergent phenomena for the other field component of the same equation. The convergence and the signification of all field components should be discussed when someone solves the nonlinear equation using the variable separating method.展开更多
With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transfor...With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transformation, improved mapping approach, and variable separation approach, among which there are rational solitary wave solutions, periodic wave solutions and rational wave solutions.展开更多
Variable gauge rolling is a new process to obtain a plate for which the thickness changes continuously by continuously and dynamically adjusting the roll gap upward and downward in the rolling process.This technology ...Variable gauge rolling is a new process to obtain a plate for which the thickness changes continuously by continuously and dynamically adjusting the roll gap upward and downward in the rolling process.This technology is an efective method for producing lightweight,low-cost,and economical plates.However,variable gauge rolling is an unsteady process,and the changes in the force and deformation parameters are complex.In this research,based on the minimum energy theory of the variational principle and considering the characteristics of the roll movement and workpiece deformation comprehensively,the internal plastic deformation,friction,shear and tension powers,and the minimum result of the total power functional in upward and downward rolling are obtained with the frst integral and then with a variation of adopting the specifc plastic power and strain rate vector inner product.The analytical results of the deformation and force parameters are also established using the variational method.Then the precision of this model is certifed using the measured values in a medium plate hot rolling plant and the experimental data for Tailor Rolled Blank rolling.Good agreement is found.Additionally,the variation rule of bite angle,neutral angle,and location neutral points are shown,and the change mechanism of the friction parameter on the stress state efect coefcient is given in variable gauge rolling.This research proposes a new mathematical model for rolling process control that provides a scientifc basis and technical support for obtaining an accurate section shape in variable gauge rolling production.展开更多
We consider the functional separation of variables to the nonlinear diffusion equation with source and convection term: ut = (A(x)D(u)ux)x + B(x)Q(u), Ax ≠ 0. The functional separation of variables to thi...We consider the functional separation of variables to the nonlinear diffusion equation with source and convection term: ut = (A(x)D(u)ux)x + B(x)Q(u), Ax ≠ 0. The functional separation of variables to this equation is studied by using the group foliation method. A classification is carried out for the equations which admit the function separable solutions. As a consequence, some solutions to the resulting equations are obtained.展开更多
In this paper, a new integrable variable coefficient Toda equation is proposed by utilizing a generalized version of the dressing method. At the same time, we derive the Lax pair of the new integrable variable coeffic...In this paper, a new integrable variable coefficient Toda equation is proposed by utilizing a generalized version of the dressing method. At the same time, we derive the Lax pair of the new integrable variable coefficient Toda equation. The compatibility condition is given, which insures that the new Toda equation is integrable. To further analyze the character of the Toda equation, we derive one soliton solution of the obtained Toda equation by using separation of variables.展开更多
Finding exact solutions for Riemann–Liouville(RL)fractional equations is very difficult.We propose a general method of separation of variables to study the problem.We obtain several general results and,as application...Finding exact solutions for Riemann–Liouville(RL)fractional equations is very difficult.We propose a general method of separation of variables to study the problem.We obtain several general results and,as applications,we give nontrivial exact solutions for some typical RL fractional equations such as the fractional Kadomtsev–Petviashvili equation and the fractional Langmuir chain equation.In particular,we obtain non-power functions solutions for a kind of RL time-fractional reaction–diffusion equation.In addition,we find that the separation of variables method is more suited to deal with high-dimensional nonlinear RL fractional equations because we have more freedom to choose undetermined functions.展开更多
首先基于分离变量算法(method of separation of variables, MSV)求解了单节流孔静压气体轴承的层流边界层方程,研究了节流孔附近流场特性,阐明了节流孔出口附近压降现象是由于惯性效应导致,并研究了轴承几何参数和供气参数对压降现象...首先基于分离变量算法(method of separation of variables, MSV)求解了单节流孔静压气体轴承的层流边界层方程,研究了节流孔附近流场特性,阐明了节流孔出口附近压降现象是由于惯性效应导致,并研究了轴承几何参数和供气参数对压降现象的影响规律。最终提出了压降现象产生的临界条件为压比为0.940 9,也即压比大于临界压比时,压降现象消失。其次基于质量流量相等原则,结合层流边界层的MSV方法及雷诺方程的解析算法,提出了一种计算节流孔系数的新方法,并研究了轴承的几何参数及供气参数对节流孔系数的影响规律。结果显示,节流孔系数存在着参数敏感和不敏感区域,这是由于当压比小于等于0.6左右时,节流孔系数趋近于一个常数0.86左右。展开更多
We study the functional separation of variables to the nonlinear heat equation: ut = (A(x)D(u)ux^n)x+ B(x)Q(u), Ax≠0. Such equation arises from non-Newtonian fluids. Its functional separation of variables...We study the functional separation of variables to the nonlinear heat equation: ut = (A(x)D(u)ux^n)x+ B(x)Q(u), Ax≠0. Such equation arises from non-Newtonian fluids. Its functional separation of variables is studied by using the group foliation method. A classification of the equation which admits the functional separable solutions is performed. As a consequence, some solutions to the resulting equations are obtained.展开更多
The higher excited states for two dimensional finite rectangular well potential are calculated numerically,by solving the Schrödinger equation using the finite difference time domain method.Although,this method i...The higher excited states for two dimensional finite rectangular well potential are calculated numerically,by solving the Schrödinger equation using the finite difference time domain method.Although,this method is suitable to calculate the ground state of the quantum systems,it has been improved to calculate the higher excited states directly.The improvement is based on modifying the iterative process involved in this method to include two procedures.The first is known as cooling steps and the second is known as a heating step.By determining the required length of the cooling iteration steps using suitable excitation energy estimate,and repeating these two procedures using suitable initial guess function for sufficient times.This modified iteration will lead automatically to the desired excited state.In the two dimensional finite rectangular well potential problem both of the suitable excitation energy and the suitable initial guess wave function are calculated analytically using the separation of variables technique.展开更多
基金supported by the National Natural Science Foundation of China (Grant No 10562002)the Natural Science Foundation of Inner Mongolia, China (Grant No 200508010103)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20070126002)the Inner Mongolia University Doctoral Scientific Research Starting Foundation
文摘The eigenvalue problem of an infinite-dimensional Hamiltonian operator appearing in the isotropic plane magnetoelectroelastic solids is studied. First, all the eigenvalues and their eigenfunctions in a rectangular domain are solved directly. Then the completeness of the eigenfunction system is proved, which offers a theoretic guarantee of the feasibility of variable separation method based on a Hamiltonian system for isotropic plane magnetoelectroelastic solids. Finally, the general solution for the equation in the rectangular domain is obtained by using the symplectic Fourier expansion method.
文摘Generalized functional separation of variables to nonlinear evolution equations is studied in terms of the extended group foliation method, which is based on the Lie point symmetry method. The approach is applied to nonlinear wave equations with variable speed and external force. A complete classification for the wave equation which admits functional separable solutions is presented. Some known results can be recovered by this approach.
基金Supported by the National Natural Science Foundation of Chinathe Doctoral Training of the State Education Commission of China
文摘By the separation of singularity, a special Fourier series solution of the boundary value problem for plane is obtained, which can satisfy all boundary conditions and converges rapidly. II is proved that the solution is equal to the result of separation of variables. As a result, the non-linear characteristic equations resulting from the method of separation of variables are transformed into polynomial equations that can provide a foundation for approximate computation and asymptotic analysis.
基金Project supported by the National Natural Science Foundation of China (Grant No 10672053)
文摘By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ODE method is developed for solving the mKdV-sinh-Gordon equation. As a result, many explicit and exact solutions including some new formal solutions are successfully picked up for the mKdV-sinh-Gordon equation by this approach.
文摘In the paper, we will discuss the Kadomtsev-Petviashvili Equation which is used to model shallow-water waves with weakly non-linear restoring forces and is also used to model waves in ferromagnetic media by employing the method of variable separation. Abundant exact solutions including global smooth solutions and local blow up solutions are obtained. These solutions would contribute to studying the behavior and blow up properties of the solution of the Kadomtsev-Petviashvili Equation.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10672053)
文摘By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equation. As a result, many explicit and exact solutions of the (2 + 1)-dimensional sine-Poisson equation are derived in a simple manner by this technique.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10675065, 90503006 and 10735030) and the K.C.Wong Magna Fund in Ningbo University.Acknowledgement The author would like to thank the helpful discussion of Prof. Sen-Yue Lou.
文摘Through analysing the exact solution of some nonlinear models, the role of the variable separating method in solving nonlinear equations is discussed. We find that rich solution structures of some special fields of these equations come from the nonzero seed solution. However, these nonzero seed solutions is likely to result in the divergent phenomena for the other field component of the same equation. The convergence and the signification of all field components should be discussed when someone solves the nonlinear equation using the variable separating method.
基金supported by the Scientific Research Foundation of Beijing Information Science and Technology UniversityScientific Creative Platform Foundation of Beijing Municipal Commission of Education
文摘With the aid of symbolic computation system Maple, some families of new rational variable separation solutions of the (2+1)-dimensional dispersive long wave equations are constructed by means of a function transformation, improved mapping approach, and variable separation approach, among which there are rational solitary wave solutions, periodic wave solutions and rational wave solutions.
基金Supported by National Natural Science Foundation of China(Grant Nos.51904206,52105390,51974196,51805359)Open Research Fund from the State Key Laboratory of Rolling and Automation,Northeastern University(Grant No.2020RALKFKT011)+1 种基金Shanxi Province Science and Technology Major Projects(Grant No.20181102015)China Postdoctoral Science Foundation(Grant No.2020M670705).
文摘Variable gauge rolling is a new process to obtain a plate for which the thickness changes continuously by continuously and dynamically adjusting the roll gap upward and downward in the rolling process.This technology is an efective method for producing lightweight,low-cost,and economical plates.However,variable gauge rolling is an unsteady process,and the changes in the force and deformation parameters are complex.In this research,based on the minimum energy theory of the variational principle and considering the characteristics of the roll movement and workpiece deformation comprehensively,the internal plastic deformation,friction,shear and tension powers,and the minimum result of the total power functional in upward and downward rolling are obtained with the frst integral and then with a variation of adopting the specifc plastic power and strain rate vector inner product.The analytical results of the deformation and force parameters are also established using the variational method.Then the precision of this model is certifed using the measured values in a medium plate hot rolling plant and the experimental data for Tailor Rolled Blank rolling.Good agreement is found.Additionally,the variation rule of bite angle,neutral angle,and location neutral points are shown,and the change mechanism of the friction parameter on the stress state efect coefcient is given in variable gauge rolling.This research proposes a new mathematical model for rolling process control that provides a scientifc basis and technical support for obtaining an accurate section shape in variable gauge rolling production.
基金The project supported by National Natural Science Foundation of China under Grant No. 10371098 and the Program for New Century Excellent Talents in Universities under Grant No. NCET-04-0968
文摘We consider the functional separation of variables to the nonlinear diffusion equation with source and convection term: ut = (A(x)D(u)ux)x + B(x)Q(u), Ax ≠ 0. The functional separation of variables to this equation is studied by using the group foliation method. A classification is carried out for the equations which admit the function separable solutions. As a consequence, some solutions to the resulting equations are obtained.
文摘In this paper, a new integrable variable coefficient Toda equation is proposed by utilizing a generalized version of the dressing method. At the same time, we derive the Lax pair of the new integrable variable coefficient Toda equation. The compatibility condition is given, which insures that the new Toda equation is integrable. To further analyze the character of the Toda equation, we derive one soliton solution of the obtained Toda equation by using separation of variables.
文摘Finding exact solutions for Riemann–Liouville(RL)fractional equations is very difficult.We propose a general method of separation of variables to study the problem.We obtain several general results and,as applications,we give nontrivial exact solutions for some typical RL fractional equations such as the fractional Kadomtsev–Petviashvili equation and the fractional Langmuir chain equation.In particular,we obtain non-power functions solutions for a kind of RL time-fractional reaction–diffusion equation.In addition,we find that the separation of variables method is more suited to deal with high-dimensional nonlinear RL fractional equations because we have more freedom to choose undetermined functions.
文摘首先基于分离变量算法(method of separation of variables, MSV)求解了单节流孔静压气体轴承的层流边界层方程,研究了节流孔附近流场特性,阐明了节流孔出口附近压降现象是由于惯性效应导致,并研究了轴承几何参数和供气参数对压降现象的影响规律。最终提出了压降现象产生的临界条件为压比为0.940 9,也即压比大于临界压比时,压降现象消失。其次基于质量流量相等原则,结合层流边界层的MSV方法及雷诺方程的解析算法,提出了一种计算节流孔系数的新方法,并研究了轴承的几何参数及供气参数对节流孔系数的影响规律。结果显示,节流孔系数存在着参数敏感和不敏感区域,这是由于当压比小于等于0.6左右时,节流孔系数趋近于一个常数0.86左右。
基金National Natural Science Foundation of China under Grant No.10671156the Program for New Century Excellent Talents in Universities under Grant No.NCET-04-0968
文摘We study the functional separation of variables to the nonlinear heat equation: ut = (A(x)D(u)ux^n)x+ B(x)Q(u), Ax≠0. Such equation arises from non-Newtonian fluids. Its functional separation of variables is studied by using the group foliation method. A classification of the equation which admits the functional separable solutions is performed. As a consequence, some solutions to the resulting equations are obtained.
文摘The higher excited states for two dimensional finite rectangular well potential are calculated numerically,by solving the Schrödinger equation using the finite difference time domain method.Although,this method is suitable to calculate the ground state of the quantum systems,it has been improved to calculate the higher excited states directly.The improvement is based on modifying the iterative process involved in this method to include two procedures.The first is known as cooling steps and the second is known as a heating step.By determining the required length of the cooling iteration steps using suitable excitation energy estimate,and repeating these two procedures using suitable initial guess function for sufficient times.This modified iteration will lead automatically to the desired excited state.In the two dimensional finite rectangular well potential problem both of the suitable excitation energy and the suitable initial guess wave function are calculated analytically using the separation of variables technique.