期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
大尺度多视立体深度估计网络S-MVSNet
1
作者 闫利 张登稣 +1 位作者 谢洪 单瑾 《测绘地理信息》 CSCD 2023年第3期30-35,共6页
针对现有估计网络空间复杂度高、难以处理高分辨率影像的问题,提出了一种大尺度多视立体深度估计网络(scalable multi-view stereo network,S-MVSNet)。以R-MVSNet为基础,提出一种轻量级的多尺度特征提取网络MiniUNet来降低空间复杂度;... 针对现有估计网络空间复杂度高、难以处理高分辨率影像的问题,提出了一种大尺度多视立体深度估计网络(scalable multi-view stereo network,S-MVSNet)。以R-MVSNet为基础,提出一种轻量级的多尺度特征提取网络MiniUNet来降低空间复杂度;结合多尺度循环神经网络(multi-scale recurrent neural network,MS-RNN)来提升正则化网络的感受野;设计半全局正则化(semi-global regularization,SGR)方法将3D正则化问题转化为两个方向上的2D序列正则化问题,以提升深度估计的精度。在DTU、ETH3D及Tanks and Temples数据集上进行测试,测试结果表明,S-MVSNet能在8 GB显存下处理2K影像,支持的最大输入分辨率是RMVSNet的2.25倍,平均精度较R-MVSNet提升11%。 展开更多
关键词 三维重建 多视立体 深度估计 循环神经网络(recurrent neural network RNN) 半全局正则化(semiglobal regularization sgr)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部