Drought events across the world are increasingly becoming a critical problem owing to its negative effects on water resources. There is need to understand on-site drought characteristics for the purpose of planning mi...Drought events across the world are increasingly becoming a critical problem owing to its negative effects on water resources. There is need to understand on-site drought characteristics for the purpose of planning mitigation measures. In this paper, meteorological drought episodes on spatial, temporal and trend domains were detected using Standardized Precipitation Index (SPI) and Effective Drought Index (EDI) in the upper Tana River basin. 41 years (1980-2016) monthly precipitation data from eight meteorological stations were used in the study. The SPI and EDI were used for reconstruction of the drought events and used to characterize the spatial, temporal and trend distribution of drought occurrence. Drought frequency was estimated as the ratio of a defined severity to its total number of events. The change in drought events was detected using a non-parametric man-Kendall trend test. The main drought conditions detected by SPI and EDI are severe drought, moderate drought, near normal, moderate wet, very wet and extremely wet conditions. From the results the average drought frequency between 1970 and 2010 for the south-eastern and north-western areas ranged from 12.16 to 14.93 and 3.82 to 6.63 percent respectively. The Mann-Kendall trend test show that drought trend increased in the south-eastern parts of the basin at 90% and 95% significant levels. However, there was no significant trend that was detected in the North-western areas. This is an indication that the south-eastern parts are more drought-prone areas compared to the North-western areas of the upper Tana River basin. Both the SPI and the EDI were effective in detecting the on-set of drought, description of the temporal variability, severity and spatial extent across the basin. It is recommended that the findings be adopted for decision making for drought-early warning systems in the river basin.展开更多
A field experiment was conducted in a manural loesial soil in middle of Shaanxi Province ofChina, a sub-humid area prone to drought, to study the effects of rainwater-harvestingcultivation on water use efficiency (WUE...A field experiment was conducted in a manural loesial soil in middle of Shaanxi Province ofChina, a sub-humid area prone to drought, to study the effects of rainwater-harvestingcultivation on water use efficiency (WUE) and yield of winter wheat. Ridge-furrow tillage wasused, the ridge being mulched by plastic sheets for rainwater harvesting while seeding in thefurrows. Results showed that from sowing to reviving stage of winter wheat, water stored in 0-100 cm layer was significantly decreased whereas that in 100-200 cm layer did not change.Compared to the non-mulching, plastic mulch retained 6.5 mm more water as an average of the twoN rate treatments, having a certain effect on conservation of soil moisture. In contrast, atharvest, water was remarkably reduced in both the 0-100 cm and the 100-200 cm layers, andmulched plots consumed 34.8 mm more water as an average of the two treatments: low N rate (75kg N ha-1) with low plant density (2 300 000 plants ha-1) and high N rate (225 kg N ha-1)with highplant density (2 800 000 plants ha-1), in 0-200 cm layer than those without mulching, the formerbeing beneficial to plants in utilization of deep layer water. Mulching was significant inharvesting water and in increase of yield. Mulched with plastic sheets, biological and grainyields were 22.5 and 22.6% higher for the average of the high N rate than for the low N rate,and the high N rate with low plant density was 29.8 and 29.1% higher in both biological andgrain yields than that of the low N rate with low plant density. With high N rate and high plantdensity, the mulched biological and grain yields were 39.5 and 28.9% higher than the correspondingtreatments without mulching. Of the treatments, that with high N rate and low plant density wasthe highest in both biological and grain yields, and the water use efficiency reached 43.7 kgmm-1 ha-1 for biological yield and 22 kg mm-1 ha-1 for grain yield, being the highest WUE reportedin the world up to now.展开更多
文摘Drought events across the world are increasingly becoming a critical problem owing to its negative effects on water resources. There is need to understand on-site drought characteristics for the purpose of planning mitigation measures. In this paper, meteorological drought episodes on spatial, temporal and trend domains were detected using Standardized Precipitation Index (SPI) and Effective Drought Index (EDI) in the upper Tana River basin. 41 years (1980-2016) monthly precipitation data from eight meteorological stations were used in the study. The SPI and EDI were used for reconstruction of the drought events and used to characterize the spatial, temporal and trend distribution of drought occurrence. Drought frequency was estimated as the ratio of a defined severity to its total number of events. The change in drought events was detected using a non-parametric man-Kendall trend test. The main drought conditions detected by SPI and EDI are severe drought, moderate drought, near normal, moderate wet, very wet and extremely wet conditions. From the results the average drought frequency between 1970 and 2010 for the south-eastern and north-western areas ranged from 12.16 to 14.93 and 3.82 to 6.63 percent respectively. The Mann-Kendall trend test show that drought trend increased in the south-eastern parts of the basin at 90% and 95% significant levels. However, there was no significant trend that was detected in the North-western areas. This is an indication that the south-eastern parts are more drought-prone areas compared to the North-western areas of the upper Tana River basin. Both the SPI and the EDI were effective in detecting the on-set of drought, description of the temporal variability, severity and spatial extent across the basin. It is recommended that the findings be adopted for decision making for drought-early warning systems in the river basin.
基金part of the projects(49890330,30230230 and 30070429)supported by the National Natural Science Foundation of China(NSFC)project(G1999011707)supported by the National Key Basic Research Support Funds,China(NKBRSF).
文摘A field experiment was conducted in a manural loesial soil in middle of Shaanxi Province ofChina, a sub-humid area prone to drought, to study the effects of rainwater-harvestingcultivation on water use efficiency (WUE) and yield of winter wheat. Ridge-furrow tillage wasused, the ridge being mulched by plastic sheets for rainwater harvesting while seeding in thefurrows. Results showed that from sowing to reviving stage of winter wheat, water stored in 0-100 cm layer was significantly decreased whereas that in 100-200 cm layer did not change.Compared to the non-mulching, plastic mulch retained 6.5 mm more water as an average of the twoN rate treatments, having a certain effect on conservation of soil moisture. In contrast, atharvest, water was remarkably reduced in both the 0-100 cm and the 100-200 cm layers, andmulched plots consumed 34.8 mm more water as an average of the two treatments: low N rate (75kg N ha-1) with low plant density (2 300 000 plants ha-1) and high N rate (225 kg N ha-1)with highplant density (2 800 000 plants ha-1), in 0-200 cm layer than those without mulching, the formerbeing beneficial to plants in utilization of deep layer water. Mulching was significant inharvesting water and in increase of yield. Mulched with plastic sheets, biological and grainyields were 22.5 and 22.6% higher for the average of the high N rate than for the low N rate,and the high N rate with low plant density was 29.8 and 29.1% higher in both biological andgrain yields than that of the low N rate with low plant density. With high N rate and high plantdensity, the mulched biological and grain yields were 39.5 and 28.9% higher than the correspondingtreatments without mulching. Of the treatments, that with high N rate and low plant density wasthe highest in both biological and grain yields, and the water use efficiency reached 43.7 kgmm-1 ha-1 for biological yield and 22 kg mm-1 ha-1 for grain yield, being the highest WUE reportedin the world up to now.