The present study proposes a new semi-immersed Jarlan-type perforated breakwater including a perforated front wall, a solid rear wall, and a horizontal perforated plate connecting the lower tips of the two walls. An a...The present study proposes a new semi-immersed Jarlan-type perforated breakwater including a perforated front wall, a solid rear wall, and a horizontal perforated plate connecting the lower tips of the two walls. An analytical solution is developed to estimate the hydrodynamic performance of the new breakwater. The analytical solution is confirmed by solutions for special cases, an independently developed multi-domain boundary element method solution and experimental data. Numerical examples based on the analytical solution indicate that compared with previous semi-immersed breakwaters, the new breakwater may have better wave-absorbing performance and smaller wave forces. Some useful results are presented for practical designs of semi-immersed Jarlan-type perforated breakwaters.展开更多
In this paper, the hydrodynamic coefficients of a horizontal semi-immersed cylinder in steady current and oscillatory flow combining with constant current are obtained via forced oscillation experiments in a towing ta...In this paper, the hydrodynamic coefficients of a horizontal semi-immersed cylinder in steady current and oscillatory flow combining with constant current are obtained via forced oscillation experiments in a towing tank. Three nondimensional parameters(Re, KC and Fr) are introduced to investigate their effects on the hydrodynamic coefficients.The experimental results show that overtopping is evident and dominates when the Reynolds number exceeds 5×105 in the experiment. Under steady current condition, overtopping increases the drag coefficient significantly at high Reynolds numbers. Under oscillatory flow with constant current condition, the added mass coefficient can even reach a maximum value about 3.5 due to overtopping while the influence of overtopping on the drag coefficient is minor.展开更多
To investigate the corrosion degradation law and service life of reinforced concrete in various salt solution environments,reinforced concrete specimens were semi-immersed in 3%Na_(2)CO_(3)(N3-0-0),3%Na_(2)CO_(3)+3%Na...To investigate the corrosion degradation law and service life of reinforced concrete in various salt solution environments,reinforced concrete specimens were semi-immersed in 3%Na_(2)CO_(3)(N3-0-0),3%Na_(2)CO_(3)+3%NaCl(N3-Cl3-0)and 3%Na_(2)CO_(3)+3%NaCl+3%Na_(2)SO_(4)(N3-Cl3-S3)salt solutions.The electrochemical workstation was used for regular non-destructive testing,and the polarization curve and related electrochemical parameters were used as the macroscopic durability evaluation indicators,while microscopic analysis of steel bar corrosion products was performed in combination with SEM and EDS.In addition,the corrosion current density degradation model of GM(1,1)was established and compared with the modified GM(1,1)-Markov degradation model.The results showed that the prediction error of the GM(1,1)-Markov model was smaller and more accurate than that of GM(1,1).The reinforced concrete specimens in the N3-0-0,N3-Cl3-0 and N3-Cl3-S3 solutions reached the failure state in 3.08,1.67,and 2.30 years,respectively,as predicted by the GM(1,1)-Markov model.According to ESM and EDS microscopic analysis of reinforcement,carbonate had no significant effect on reinforcement corrosion,chloride ions played a dominant role in reinforcement corrosion,and sulfate ion improved concrete's resistance to chloride ion corrosion.Based on GM(1,1)-Markov model,the failure and damage of reinforced concrete in saline soil areas can be quantitatively evaluated in the whole life cycle,which provides a theoretical basis for the early maintenance or reinforcing of reinforced concrete.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51322903 and 51279224)Program for New Century Excellent Talents in University(Grant No.NCET-13-0528)
文摘The present study proposes a new semi-immersed Jarlan-type perforated breakwater including a perforated front wall, a solid rear wall, and a horizontal perforated plate connecting the lower tips of the two walls. An analytical solution is developed to estimate the hydrodynamic performance of the new breakwater. The analytical solution is confirmed by solutions for special cases, an independently developed multi-domain boundary element method solution and experimental data. Numerical examples based on the analytical solution indicate that compared with previous semi-immersed breakwaters, the new breakwater may have better wave-absorbing performance and smaller wave forces. Some useful results are presented for practical designs of semi-immersed Jarlan-type perforated breakwaters.
基金financially supported by the SINTEF Fisheries and Aquaculture of Norway and the National Natural Science Foundation of China(Grant No.51490674)
文摘In this paper, the hydrodynamic coefficients of a horizontal semi-immersed cylinder in steady current and oscillatory flow combining with constant current are obtained via forced oscillation experiments in a towing tank. Three nondimensional parameters(Re, KC and Fr) are introduced to investigate their effects on the hydrodynamic coefficients.The experimental results show that overtopping is evident and dominates when the Reynolds number exceeds 5×105 in the experiment. Under steady current condition, overtopping increases the drag coefficient significantly at high Reynolds numbers. Under oscillatory flow with constant current condition, the added mass coefficient can even reach a maximum value about 3.5 due to overtopping while the influence of overtopping on the drag coefficient is minor.
基金Funded by National Natural Science Foundation of China(No.52178216)Gansu Provincial Science and Technology Programme(No.23JRRA813)。
文摘To investigate the corrosion degradation law and service life of reinforced concrete in various salt solution environments,reinforced concrete specimens were semi-immersed in 3%Na_(2)CO_(3)(N3-0-0),3%Na_(2)CO_(3)+3%NaCl(N3-Cl3-0)and 3%Na_(2)CO_(3)+3%NaCl+3%Na_(2)SO_(4)(N3-Cl3-S3)salt solutions.The electrochemical workstation was used for regular non-destructive testing,and the polarization curve and related electrochemical parameters were used as the macroscopic durability evaluation indicators,while microscopic analysis of steel bar corrosion products was performed in combination with SEM and EDS.In addition,the corrosion current density degradation model of GM(1,1)was established and compared with the modified GM(1,1)-Markov degradation model.The results showed that the prediction error of the GM(1,1)-Markov model was smaller and more accurate than that of GM(1,1).The reinforced concrete specimens in the N3-0-0,N3-Cl3-0 and N3-Cl3-S3 solutions reached the failure state in 3.08,1.67,and 2.30 years,respectively,as predicted by the GM(1,1)-Markov model.According to ESM and EDS microscopic analysis of reinforcement,carbonate had no significant effect on reinforcement corrosion,chloride ions played a dominant role in reinforcement corrosion,and sulfate ion improved concrete's resistance to chloride ion corrosion.Based on GM(1,1)-Markov model,the failure and damage of reinforced concrete in saline soil areas can be quantitatively evaluated in the whole life cycle,which provides a theoretical basis for the early maintenance or reinforcing of reinforced concrete.