In this paper,we study optimality conditions of approximate solutions for nonsmooth semi-infinite programming problems.Three new classes of functions,namelyε-pseudoconvex functions of type I and type II andε-quasico...In this paper,we study optimality conditions of approximate solutions for nonsmooth semi-infinite programming problems.Three new classes of functions,namelyε-pseudoconvex functions of type I and type II andε-quasiconvex functions are introduced,respectively.By utilizing these new concepts,sufficient optimality conditions of approximate solutions for the nonsmooth semi-infinite programming problem are established.Some examples are also presented.The results obtained in this paper improve the corresponding results of Son et al.(J Optim Theory Appl 141:389–409,2009).展开更多
In this paper,we present a central cutting plane algorithm for solving convex min-max semi-infinite programming problems.Because the objective function here is non-differentiable,we apply a smoothing technique to the ...In this paper,we present a central cutting plane algorithm for solving convex min-max semi-infinite programming problems.Because the objective function here is non-differentiable,we apply a smoothing technique to the considered problem and develop an algorithm based on the entropy function.It is shown that the global convergence of the proposed algorithm can be obtained under weaker conditions.Some numerical results are presented to show the potential of the proposed algorithm.展开更多
This paper considers a nonsmooth semi-infinite minimax fractional programming problem(SIMFP) involving locally Lipschitz invex functions. The authors establish necessary optimality conditions for SIMFP. The authors ...This paper considers a nonsmooth semi-infinite minimax fractional programming problem(SIMFP) involving locally Lipschitz invex functions. The authors establish necessary optimality conditions for SIMFP. The authors establish the relationship between an optimal solution of SIMFP and saddle point of scalar Lagrange function for SIMFP. Further, the authors study saddle point criteria of a vector Lagrange function defined for SIMFP.展开更多
By a coincidence theorem, some existence theorems of solutions are proved for four types of generalized vector equilibrium problems with moving cones. Applications to the generalized semi-infinite programs with the ge...By a coincidence theorem, some existence theorems of solutions are proved for four types of generalized vector equilibrium problems with moving cones. Applications to the generalized semi-infinite programs with the generalized vector equilibrium constraints under the mild conditions are also given. The results of this paper unify and improve the corresponding results in the previous literature.展开更多
In this paper,we propose an iterative algorithm to find the optimal incentive mechanism for the principal-agent problem under moral hazard where the number of agent action profiles is infinite,and where there are an i...In this paper,we propose an iterative algorithm to find the optimal incentive mechanism for the principal-agent problem under moral hazard where the number of agent action profiles is infinite,and where there are an infinite number of results that can be observed by the principal.This principal-agent problem has an infinite number of incentive-compatibility constraints,and we transform it into an optimization problem with an infinite number of constraints called a semi-infinite programming problem.We then propose an exterior penalty function method to find the optimal solution to this semi-infinite programming and illustrate the convergence of this algorithm.By analyzing the optimal solution obtained by the proposed penalty function method,we can obtain the optimal incentive mechanism for the principal-agent problem with an infinite number of incentive-compatibility constraints under moral hazard.展开更多
This paper is concerned with the study of optimality conditions for minimax optimization problems with an infinite number of constraints,denoted by(MMOP).More precisely,we first establish necessary conditions for opti...This paper is concerned with the study of optimality conditions for minimax optimization problems with an infinite number of constraints,denoted by(MMOP).More precisely,we first establish necessary conditions for optimal solutions to the problem(MMOP)by means of employing some advanced tools of variational analysis and generalized differentiation.Then,sufficient conditions for the existence of such solutions to the problem(MMOP)are investigated with the help of generalized convexity functions defined in terms of the limiting subdifferential of locally Lipschitz functions.Finally,some of the obtained results are applied to formulating optimality conditions for weakly efficient solutions to a related multiobjective optimization problem with an infinite number of constraints,and a necessary optimality condition for a quasiε-solution to problem(MMOP).展开更多
基金This work was partially supported by the National Natural Science Foundation of China(Nos.11471059 and 11671282)the Chongqing Research Program of Basic Research and Frontier Technology(Nos.cstc2014jcyjA00037,cstc2015jcyjB00001 and cstc2014jcyjA00033)+2 种基金the Education Committee Project Research Foundation of Chongqing(Nos.KJ1400618 and KJ1400630)the Program for University Innovation Team of Chongqing(No.CXTDX201601026)the Education Committee Project Foundation of Bayu Scholar.
文摘In this paper,we study optimality conditions of approximate solutions for nonsmooth semi-infinite programming problems.Three new classes of functions,namelyε-pseudoconvex functions of type I and type II andε-quasiconvex functions are introduced,respectively.By utilizing these new concepts,sufficient optimality conditions of approximate solutions for the nonsmooth semi-infinite programming problem are established.Some examples are also presented.The results obtained in this paper improve the corresponding results of Son et al.(J Optim Theory Appl 141:389–409,2009).
基金supported by National Natural Science Foundation of China(Grant No.11271221)
文摘In this paper,we present a central cutting plane algorithm for solving convex min-max semi-infinite programming problems.Because the objective function here is non-differentiable,we apply a smoothing technique to the considered problem and develop an algorithm based on the entropy function.It is shown that the global convergence of the proposed algorithm can be obtained under weaker conditions.Some numerical results are presented to show the potential of the proposed algorithm.
基金supported by the Council of Scientific and Industrial Research(CSIR),New Delhi,India under Grant No.09/013(0474)/2012-EMR-1
文摘This paper considers a nonsmooth semi-infinite minimax fractional programming problem(SIMFP) involving locally Lipschitz invex functions. The authors establish necessary optimality conditions for SIMFP. The authors establish the relationship between an optimal solution of SIMFP and saddle point of scalar Lagrange function for SIMFP. Further, the authors study saddle point criteria of a vector Lagrange function defined for SIMFP.
基金Project supported by the Key Program of the National Natural Science Foundation of China(NSFC)(No.70831005)the National Natural Science Foundation of China(Nos.11171237,11226228,and 11201214)+1 种基金the Science and Technology Program Project of Henan Province of China(No.122300410256)the Natural Science Foundation of Henan Education Department of China(No.2011B110025)
文摘By a coincidence theorem, some existence theorems of solutions are proved for four types of generalized vector equilibrium problems with moving cones. Applications to the generalized semi-infinite programs with the generalized vector equilibrium constraints under the mild conditions are also given. The results of this paper unify and improve the corresponding results in the previous literature.
基金supported by National Natural Science Foundation of China(72031009 and 71871171)the National Social Science Foundation of China(20&ZD058).
文摘In this paper,we propose an iterative algorithm to find the optimal incentive mechanism for the principal-agent problem under moral hazard where the number of agent action profiles is infinite,and where there are an infinite number of results that can be observed by the principal.This principal-agent problem has an infinite number of incentive-compatibility constraints,and we transform it into an optimization problem with an infinite number of constraints called a semi-infinite programming problem.We then propose an exterior penalty function method to find the optimal solution to this semi-infinite programming and illustrate the convergence of this algorithm.By analyzing the optimal solution obtained by the proposed penalty function method,we can obtain the optimal incentive mechanism for the principal-agent problem with an infinite number of incentive-compatibility constraints under moral hazard.
基金supported by the National Natural Science Foundation of China(No.11761072)the Project of Jilin Science and Technology Development for Leading Talent of Science and Technology Innovation in Middle and Young and Team Project(No.20200301053RQ)。
文摘This paper is concerned with the study of optimality conditions for minimax optimization problems with an infinite number of constraints,denoted by(MMOP).More precisely,we first establish necessary conditions for optimal solutions to the problem(MMOP)by means of employing some advanced tools of variational analysis and generalized differentiation.Then,sufficient conditions for the existence of such solutions to the problem(MMOP)are investigated with the help of generalized convexity functions defined in terms of the limiting subdifferential of locally Lipschitz functions.Finally,some of the obtained results are applied to formulating optimality conditions for weakly efficient solutions to a related multiobjective optimization problem with an infinite number of constraints,and a necessary optimality condition for a quasiε-solution to problem(MMOP).