Using the complex variable function method and the technique of the conformal mapping, the fracture problem of a semi-infinite crack in a piezoelectric strip is studied under the anti-plane shear stress and the in-pla...Using the complex variable function method and the technique of the conformal mapping, the fracture problem of a semi-infinite crack in a piezoelectric strip is studied under the anti-plane shear stress and the in-plane electric load. The analytic solutions of the field intensity factors and the mechanical strain energy release rate are presented under the assumption that the surface of the crack is electrically impermeable. When the height of the strip tends to infinity, the analytic solutions of an infinitely large piezoelectric solid with a semi-infinite crack are obtained. Moreover, the present results can be reduced to the well-known solutions for a purely elastic material in the absence of the electric loading. In addition, numerical examples are given to show the influences of the loaded crack length, the height of the strip, and the applied mechanical/electric loads on the mechanical strain energy release rate.展开更多
Using the complex variable function method and the conformal mapping technique, the fracture problem of two semi-infinite collinear cracks in a piezoelectric strip is studied under the anti-plane shear stress and the ...Using the complex variable function method and the conformal mapping technique, the fracture problem of two semi-infinite collinear cracks in a piezoelectric strip is studied under the anti-plane shear stress and the in-plane electric load on the partial crack surface. Analytic solutions of the field intensity factors and the mechanical strain energy release rate are derived under the assumption that the surfaces of the crack are electrically impermeable. The results can be reduced to the well-known solutions for a purely elastic material in the absence of an electric load. Moreover, when the distance between the two crack tips tends to infinity, analytic solutions of a semi-infinite crack in a piezoelectric strip can be obtained. Numerical examples are given to show the influence of the loaded crack length, the height of the strip, the distance between the two crack tips, and the applied mechanical/electric loads on the mechanical strain energy release rate. It is shown that the material is easier to fail when the distance between two crack tips becomes shorter, and the mechanical/electric loads have greater influence on the propagation of the left crack than those of the right one.展开更多
The elastostatic solutions of semi-infinite orthotropic cantilevered strips with traction free edges and loading at infinity are governed by the differential equationφ,■+(2+δ_(0))φ,■+φ,■=0 withδ_(0)>-4 with...The elastostatic solutions of semi-infinite orthotropic cantilevered strips with traction free edges and loading at infinity are governed by the differential equationφ,■+(2+δ_(0))φ,■+φ,■=0 withδ_(0)>-4 with Based on the work of[10]forδ_(0)>0 case,.this paper completes the caseδ_(0)=0 for isotropic materials and the case 0>δ_(0)>-4 for orthotropic materials.The solutions of the above problems have important application in the properly formulated boundary conditions of plate theories for prescribed displacement edge data.展开更多
The eigenvalue problem about a nonhomogeneous semi-infinite strip is investigated using the methodology proposed by Papkovich and Fadle for homogeneous plane problems. Two types of nonhomogeneity are considered: (i...The eigenvalue problem about a nonhomogeneous semi-infinite strip is investigated using the methodology proposed by Papkovich and Fadle for homogeneous plane problems. Two types of nonhomogeneity are considered: (i) the elastic modulus varying with the thickness coor- dinate x exponentially, (ii) it varying with the length coordinate y exponentially. The eigenvalues for the two cases are obtained numerically in plane strain and plane stress states, respectively. By considering the smallest positive eigenvalue, tile Saint-Venant Decay rates are estimated, which indicates material nonhomogeneity has a signifcant influence on the Saint-Venant end effect.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.10932001 and 11072015)the Scientific Research Key Program of Beijing Municipal Commission of Education (No.KZ201010005003)the Ph.D.Innovation Foundation of Beijing University of Aeronautics and Astronautics(No.300351)
文摘Using the complex variable function method and the technique of the conformal mapping, the fracture problem of a semi-infinite crack in a piezoelectric strip is studied under the anti-plane shear stress and the in-plane electric load. The analytic solutions of the field intensity factors and the mechanical strain energy release rate are presented under the assumption that the surface of the crack is electrically impermeable. When the height of the strip tends to infinity, the analytic solutions of an infinitely large piezoelectric solid with a semi-infinite crack are obtained. Moreover, the present results can be reduced to the well-known solutions for a purely elastic material in the absence of the electric loading. In addition, numerical examples are given to show the influences of the loaded crack length, the height of the strip, and the applied mechanical/electric loads on the mechanical strain energy release rate.
基金Project supported by the National Natural Science Foundation of China(Nos.10932001 and 11072015)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20101102110016)
文摘Using the complex variable function method and the conformal mapping technique, the fracture problem of two semi-infinite collinear cracks in a piezoelectric strip is studied under the anti-plane shear stress and the in-plane electric load on the partial crack surface. Analytic solutions of the field intensity factors and the mechanical strain energy release rate are derived under the assumption that the surfaces of the crack are electrically impermeable. The results can be reduced to the well-known solutions for a purely elastic material in the absence of an electric load. Moreover, when the distance between the two crack tips tends to infinity, analytic solutions of a semi-infinite crack in a piezoelectric strip can be obtained. Numerical examples are given to show the influence of the loaded crack length, the height of the strip, the distance between the two crack tips, and the applied mechanical/electric loads on the mechanical strain energy release rate. It is shown that the material is easier to fail when the distance between two crack tips becomes shorter, and the mechanical/electric loads have greater influence on the propagation of the left crack than those of the right one.
文摘The elastostatic solutions of semi-infinite orthotropic cantilevered strips with traction free edges and loading at infinity are governed by the differential equationφ,■+(2+δ_(0))φ,■+φ,■=0 withδ_(0)>-4 with Based on the work of[10]forδ_(0)>0 case,.this paper completes the caseδ_(0)=0 for isotropic materials and the case 0>δ_(0)>-4 for orthotropic materials.The solutions of the above problems have important application in the properly formulated boundary conditions of plate theories for prescribed displacement edge data.
基金Supported by the National Natural Science Foundation of China under Grant No.60173039(国家自然科学基金)the Special Foundation of 985 Project of SUN YAT-SEN University of China (中山大学985工程专项资金)
基金Project supported by the National Natural Science Foundation of China(No.41072207)
文摘The eigenvalue problem about a nonhomogeneous semi-infinite strip is investigated using the methodology proposed by Papkovich and Fadle for homogeneous plane problems. Two types of nonhomogeneity are considered: (i) the elastic modulus varying with the thickness coor- dinate x exponentially, (ii) it varying with the length coordinate y exponentially. The eigenvalues for the two cases are obtained numerically in plane strain and plane stress states, respectively. By considering the smallest positive eigenvalue, tile Saint-Venant Decay rates are estimated, which indicates material nonhomogeneity has a signifcant influence on the Saint-Venant end effect.