In this study,SRTM DEM data and ASTER GDEM data were used as the basic topographic data,and Arc Hydro Tools was utilized for extension module so as to study on extracting digital drainage network of watershed based on...In this study,SRTM DEM data and ASTER GDEM data were used as the basic topographic data,and Arc Hydro Tools was utilized for extension module so as to study on extracting digital drainage network of watershed based on surface runoff model,as well as to compare the two extracted results.The result showed that through the introduction of drainage density parameter to determine the river drainage area threshold,the both extracted drainages showed the goodness-of-fit with the factual drainage network on 1∶250 000 scale topographic map,and the extracted digital river could be used in practical operation of the risk assessment model of mountain torrents disaster in Liaohe basin.展开更多
[Objective]Study on carbon sink effects in Conversion of Farmland to Forest Project in Hongfenghu drainage basin in order to provide evidences for assessing carbon sink potential of conversion of farmland to forest in...[Objective]Study on carbon sink effects in Conversion of Farmland to Forest Project in Hongfenghu drainage basin in order to provide evidences for assessing carbon sink potential of conversion of farmland to forest in Guizhou Province.[Method]By investigating the implement of Conversion of Farmland to Forest Project in Hongfenghu drainage basin from 2000 to 2006,the carbon sink amount and effect of seven main tree species in the foreat region like Cunninghamia lanceolata,Cryptomeria fortunei,Amygdalus persica,Prunus salicina,Armeniaca vulgaris,Camptotheca acuminate and Catalpa bungei were calculated,based on which the amount of forest carbon sinks in Hongfenghu drainage basin in 2015 was estimated.[Result]Biomass storage and carbon sink amount in middle and young aged forests were increasing over time from 2000 to 2006,which reached 1.05×107 kg by 2006 and would engage more and more potential.Cunninghamia lanceolata has the superior carbon sink capacity in the seven tree species in the research region,of which the amount of carbon sink per unit area will be 106.51 t/hm2 by 2015,followed by Cryptomeria fortunei with the amount of carbon sink per unit area by 99.42 t/hm2.Armeniaca vulgaris has the weakest carbon sink capacity of all the seven species with the amount of 13.03 t/hm2.The total amount of carbon sink in seven tree species was 2.35×107 kg,while the average amount of carbon sink per unit area was 26.17 t/hm2,which could produced economic benefit of 7.17×106 yuan calculated on the price of 305.0 yuan/t or 5.91×106 yuan calculated on the price of 254.1 yuan/t.[Conclusion]Economic benefits of carbon sink effects of Conversion of Farmland to Forest Project in Hongfenghu drainage basin were great with huge appreciation potential.展开更多
The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in Chin...The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in China have done researches concerning this problem. Based on previous researches, this paper analyzed characteristics, tendencies, and causes of annual runoff variations in the Yingluo Gorge (1944-2005) and the Zhengyi Gorge (1954-2005), which are the boundaries of the upper reaches, the middle reaches, and the lower reaches of the Heihe River drainage basin, by wavelet analysis, wavelet neural network model, and GIS spatial analysis. The results show that: (1) annual runoff variations of the Yingluo Gorge have principal periods of 7 years and 25 years, and its increasing rate is 1.04 m^3/s.10y; (2) annual runoff variations of the Zhengyi Gorge have principal periods of 6 years and 27 years, and its decreasing rate is 2.25 m^3/s.10y; (3) prediction results show that: during 2006-2015, annual runoff variations of the Yingluo and Zhengyi gorges have ascending tendencies, and the increasing rates are respectively 2.04 m^3/s.10y and 1.61 m^3/s.10y; (4) the increase of annual runoff in the Yingluo Gorge has causal relationship with increased temperature and precipitation in the upper reaches, and the decrease of annual runoff in the Zhengyi Gorge in the past decades was mainly caused by the increased human consumption of water resources in the middle researches. The study results will provide scientific basis for making rational use and allocation schemes of water resources in the Heihe River drainage basin.展开更多
ABSTRACT: The present study reconstructs an annual dry/wet grade series from 960 A. D. to 1992 A. D. in the Tai-hu drainage basin of eastern coast, China by collecting historical climatic records, to examine the clima...ABSTRACT: The present study reconstructs an annual dry/wet grade series from 960 A. D. to 1992 A. D. in the Tai-hu drainage basin of eastern coast, China by collecting historical climatic records, to examine the climate periodicity and climate jumps. Power Spectrum analysis reveals that the dry/wet climate in the study area was a superposed phenomenon with the major period of quasi-100-year, and several other notable periods. These periods were supposed to be closely linked with the celestial activity. Climate jumps are detected using moving t-test. The two abrupt changes around 1247 - 1263 A. D. and 1618 - 1635 A. D. are proved as regional events. The 14th to 15th century appeared as the wettest period during the last 1000 years in the Taihu drainage basin. These are interpreted as the consequence of east Asia climate change.展开更多
This study investigate the relationships between geomorphometric properties and the minimum low flow discharge of undisturbed drainage basins in the Taman Bukit Cahaya Seri Alam Forest Reserve, Peninsular Malaysia. Th...This study investigate the relationships between geomorphometric properties and the minimum low flow discharge of undisturbed drainage basins in the Taman Bukit Cahaya Seri Alam Forest Reserve, Peninsular Malaysia. The drainage basins selected were third-order basins so as to facilitate a common base for sampling and performing an unbiased statistical analyses. Three levels of relationships were observed in the study. Significant relationships existed between the geomorphometric properties as shown by the correlation network analysis; secondly, individual geomorphometric properties were observed to influence minimum flow discharge; and finally, the multiple regression model set up showed that minimum flow discharge(Q min) was dependent of basin area(AU), stream length(LS), maximum relief(Hmax), average relief(HAV) and stream frequency(SF). These findings further enforced other studies of this nature that drainage basins were dynamic and functional entities whose operations were governed by complex interrelationships occurring within the basins. Changes to any of the geomorphometric properties would influence their role as basin regulators thus influencing a change in basin response. In the case of the basin's minimum low flow, a change in any of the properties considered in the regression model influenced the “time to peak' of flow. A shorter time period would mean higher discharge, which is generally considered the prerequisite to flooding. This research also conclude that the role of geomorphometric properties to control the water supply within the stream through out the year even though during the drought and less precipitations months. Drainage basins are sensitive entities and any deteriorations involve will generate reciprocals and response to the water supply as well as the habitat within the areas.展开更多
The evolution of southwest Montana’s Big Hole and Beaverhead River drainage basins is determined from topographic map evidence related to mountain passes crossing what are today high altitude drainage divides includi...The evolution of southwest Montana’s Big Hole and Beaverhead River drainage basins is determined from topographic map evidence related to mountain passes crossing what are today high altitude drainage divides including North America’s east-west Continental Divide. Map evidence, such as orientations of valleys leading away from mountain passes (and saddles) and barbed tributaries found along the downstream drainage routes, is used to reconstruct flow directions of streams and rivers that once crossed the present-day high mountain divides. Large south-oriented anastomosing complexes of diverging and converging channels are interpreted to have eroded what are today closely spaced passes and saddles now notched into high mountain ridges. Water in those south-oriented channels is interpreted to have flowed across emerging mountains and subsiding basins. Headward erosion of deeper southeast-oriented valleys, assisted by crustal warping, concentrated south-oriented water in fewer and deeper valleys as the water flowed from southwest Montana into what are today Idaho and the Snake River drainage basin. Headward erosion of the Big Hole River valley between the emerging Anaconda and Pioneer Mountains, also assisted by crustal warping, reversed all Big Hole Basin drainage so as to create the north-, east-, and south-oriented Big Hole River drainage route. A final and even more major reversal of flow in the present-day north-oriented Montana Missouri River valley, with the assistance of additional crustal warping, next ended all remaining flow to Idaho and the Snake River drainage basin and reversed and captured all drainage in the present-day north-oriented Big Hole, Beaverhead, and Red Rock River drainage basins. The observed map evidence indicates that prior to the final flow reversal events, large volumes of south-oriented water flowed across southwest Montana’s Big Hole and Beaverhead River drainage basins.展开更多
The uplift of the Arabian Shield and the opening of the Red Sea led to the development of steep drainage systems in the Western Arabian Peninsula. Although the Peninsula has been studied from a geological perspective,...The uplift of the Arabian Shield and the opening of the Red Sea led to the development of steep drainage systems in the Western Arabian Peninsula. Although the Peninsula has been studied from a geological perspective, in relation to oil production, plate tectonics and eolian systems such as sand dunes, the steep mountainous drainage basins have received much less attention. This paper aims to assess the characteristics and development of 36 drainage basins in the Western Arabian Peninsula, using a digital elevation model (DEM), principal component analysis (PCA), and hierarchical cluster analysis (CA). Three major principal components (PC1 to PC3) are found to explain 73% of total variance. CA divided the basins into two or four groups. The division by CA strongly reflects PC1, showing that the two analyses give comparable results. PC1 strongly reflects basin dimensions and drainage texture, and their positive correlations indicate the significant effect of basin relief and slope on mass wasting and limited stream incision in small basins under an arid climate. PC2 mainly reflects the effect of bedrock geology, suggesting that volcanic rocks tend to produce more elongated and less eroded immature basins than crystalline rocks do. PC3 mainly reflects the basin relief and slope and the length of each stream segment, which may also reflect the effect of mass wasting on stream development.展开更多
Morphometric analysis is mathematical evaluation and measurement of the earth’s shape, surface and its landform’s dimension. Morphometric analysis of Dhund river basin in Jaipur district of Rajasthan India has been ...Morphometric analysis is mathematical evaluation and measurement of the earth’s shape, surface and its landform’s dimension. Morphometric analysis of Dhund river basin in Jaipur district of Rajasthan India has been carried out to evaluate various morphometric parameters following the linear, areal and relief aspects. The drainage basin, which covers a total area of about 1828 km<sup>2</sup> lies in eastern part of the district with maximum and minimum elevation of 603 m and 214 m respectively. Morphotectonic parameters like Hypsometric Integral, Sinuosity index and Asymmetry Factor have also been computed to identify the tectonic characteristics of the drainage basin. Primary and secondary data such as SOI topographic map, Cartosat-1 DEM and other relevant data were utilized. ArcGIS software (Arc Map 10.2) was used for geo-referencing of topographic maps, delineation of watershed and preparation of DEM, slope and drainage network. The basin is 6th order drainage basin having dendritic pattern of drainage network. A relatively lower mean value of Bifurcation ratio suggests that the drainage basin is formed by uniformed materials. Drainage basin area has little elongated shape and is less prone to floods. Basin has different erosional stages and levels of tectonic activity, Moderate Meandering and unstable setting.展开更多
A Systematic Study on Land (SSL), aiming at the investigation of the land complex, isone of the important parts of integrated physical geography. With systematic theory as guid-ance, the dissertaton carries out the co...A Systematic Study on Land (SSL), aiming at the investigation of the land complex, isone of the important parts of integrated physical geography. With systematic theory as guid-ance, the dissertaton carries out the comprehensive and systematic study of a series ofsubsystems like land classification, land structure analysis, comprehensive physicalregionalization, land evaluation, reasonable planning of land utilization as well as popula-展开更多
Tectonic transition from a syn-rift stage to subsequent post-rift stage is an important mechanism in the evolution of extensional basins.The sedimentary infill records the crustal response to this process.We have obta...Tectonic transition from a syn-rift stage to subsequent post-rift stage is an important mechanism in the evolution of extensional basins.The sedimentary infill records the crustal response to this process.We have obtained new detrital zircon U-Pb and Lu-Hf signatures from the Lower Cretaceous stratigraphic successions encompassing the commonly accepted syn-to post-rift transition boundary,the T4 unconformity,in the Songliao Basin,NE China.These constrain the Songliao Basin’s evolution from its center to distal margins,providing insights into the sediment provenance and dispersal pattern over the tectonic transition.Analysis of zircons from the syn-rift(the Shahezi and Yingcheng formations)and immediate post-rift(the Lower and Middle Denglouku Formation)stages reveals Phanerozoic age populations with positiveƐHf(t)values,which were derived from the proximal juvenile mantle-derived melt origin bedrocks of the Songliao Block.In contrast,the overlying samples from the Upper Denglouku Formation deposited in the subsequent post-rift stage contain exotic and ancient zircon populations with ages of 2.5 Ga&1.8 Ga and complex hafnium signatures,characteristic of a mixed origin.These are interpreted to be transported from distant cratonic terranes via larger drainage networks.It is obvious that the sediment dispersal pattern switched from being a local and hydrologically closed“intraregional”pattern to a“transcontinental”pattern during the transition.The time lag between the development of the T4 unconformity and the drainage reorganization also ensures a distinguishable3 Myr(106103 Ma,Late Albian)transition period of regional extent.During this transition stage,syn-rift faulting was replaced by postrift thermal subsidence,exhibiting a uniform sag configuration.Our new findings are important for understanding other continental rift basins during syn-to post-rift transition,which often demonstrates a complex interaction between the linkage and integration of sub-basins,and the reorganization of fluvial drainages and catchment systems.展开更多
In karst area water deficit is one of the main factors constraining sustainable economic development. In 1979 the comprehensive karstic observational field station was set up in Houzhai drainage basin located,\ in Pud...In karst area water deficit is one of the main factors constraining sustainable economic development. In 1979 the comprehensive karstic observational field station was set up in Houzhai drainage basin located,\ in Puding county of Guizhou Province, which can represent most of the small karst drainage basins on the dividing line of the Guizhou Plateau. Geomorphology, water resources and water chemistry were investigated and observed. Based on comparisons of water supply with water demand and analysis of the main problems in water exploitation and utilization. it is found out that the water deficiency was not directly caused by the scarcity of natural water resources. The true reason is the insufficient capacity of water supply caused by the dismatch of the water and soil water resources which can be dealt with by building more irrigation works. Some solutions such as to build scientific basis for water exploitation and utilization and sustainable economic development in karst drainage basins on dividing line of the Guizhou Plateau.展开更多
A Hydrological model is proposed to study the spatial and temporal variability of the water budget components of large drainage basin systems from atmospheric and terrestrial water balances. In order to understand the...A Hydrological model is proposed to study the spatial and temporal variability of the water budget components of large drainage basin systems from atmospheric and terrestrial water balances. In order to understand the water balances that include, surface runoff, actual evapotranspiration and soil moisture, a GIS-based simple water balance model which is referred as Hydrological Model from Hybrid Atmospheric and Terrestrial Water Balances with acronym HATWAB is presented. The spatio-temporal climatology database was created from a network of climate stations from CLIMWAT data base to reconstruct the monthly primary inputs to HATWAB model, rainfall and potential evapotranspiration. The modeling principles and HATWAB model are demonstrated using the Limpopo and Congo basins in Africa. The model was used to simulate water balance components by taking rainfall-runoff processes in the basin including soil-texture controlled moisture in the terrestrial system, and the vertical integrated moisture convergence that accounts for the net water vapor flux from the basins in order to close the hydrologic water budget.展开更多
In Karst drainage basins, there are the ground water and underground water exchanging frequently, and the shortage of water resources due to having the special double aquifer mediums and unique surface and subsurface ...In Karst drainage basins, there are the ground water and underground water exchanging frequently, and the shortage of water resources due to having the special double aquifer mediums and unique surface and subsurface river systematic structure. This paper is to select 20 research sampling areas coming fromGuizhouProvince, and according to the spectral characteristics of the catchment water-holding mediums and vegetations, and using the remote sensing technique, extract the watershed vegetation index. According to the principle of principal component analysis, using the software of Spss and Matlab is to analyze the impacts of watershed vegetation type on the catchment water-holding ability, and establish the principal component analysis function. Studies have shown that: 1) the watershed vegetation coverage rate plays an important role in Karst basin water-holding ability;2) the catchment water-holding ability is the comprehensive reflection and manifestation of the Catchment Water-storing Capacity (CWC);3) it is much better effects and higher accuracy to monitor/forecast the catchment water-holding volume by using the vegetation indices.展开更多
While not usually stated, detailed topographic maps show well-mapped anomalous drainage system and other erosional landform evidence the accepted North American Cenozoic geologic and glacial history paradigm (accepted...While not usually stated, detailed topographic maps show well-mapped anomalous drainage system and other erosional landform evidence the accepted North American Cenozoic geologic and glacial history paradigm (accepted paradigm) does not permit geomorphologists to satisfactorily explain. A new and fundamentally different paradigm able to explain the drainage system and other erosional landform evidence has recently emerged, but requires what the accepted paradigm considers to be the preglacial (and probably mid-Cenozoic) Bell River drainage system to have formed on a melting continental ice sheet’s floor. The new paradigm’s melting ice sheet had previously eroded bedrock underneath it and caused crustal warping that raised continental regions and mountain ranges so as to create and occupy a deep “hole” while massive and prolonged meltwater floods flowed across rising continental regions and mountain ranges to the south. The new paradigm leads to a completely different middle Cenozoic geologic and glacial history than the accepted paradigm describes and the two paradigms are analyzed according to good science expectations such as using evidence anyone can see, applying common sense logic during each research step, producing consistent results, and simplicity of paradigm generated explanations. The new paradigm uses topographic map evidence anyone can see, appears to use common sense logic during each research step, and produces remarkably consistent results leading to a simpler Cenozoic northern Missouri River drainage basin region geologic and glacial history than what the accepted paradigm describes. Further work is needed to test the new paradigm’s ability to explain drainage system and erosional landform evidence in other geographic regions such as in the Ohio River drainage basin.展开更多
Depressions in landscapes function as buffers for water and sediment. A landscape with depressions has less runoff, less erosion and more sedimentation than that without depressions. Sinks in digital elevation models ...Depressions in landscapes function as buffers for water and sediment. A landscape with depressions has less runoff, less erosion and more sedimentation than that without depressions. Sinks in digital elevation models (DEMs) can be considered the real features that represent depressions in actual landscapes or spurious features that result from errors in DEM creation. In many hydrological and erosion models, all sinks are considered as spurious features and, as a result, these models do not deal with the sinks that represent real depressions. Consequently, the surface runoff and erosion are overestimated due to removing the depressions. Aiming at this problem, this paper presents a new method, which deal with the sinks that represent real depressions. The drainage network is extracted without changing the original DEM. The method includes four steps: detecting pits, detecting depressions, merging depressions, and extracting drainage network. Because the elevations of grid cells are not changed, the method can also avoid producing new fiat areas, which are always produced by the conventional filling methods. The proposed method was applied to the Xihanshui River basin, the upper reach of the Jialingjiang River basin, China, to automatically extract the drainage network based on DEM. The extracted drainage network agrees well with the reality and can be used for further hydrologic analysis and erosion estimation.展开更多
A new Cenozoic geology and glacial history paradigm (new paradigm), fundamentally different from the accepted Cenozoic geology and glacial history paradigm (accepted paradigm), describes a thick North American contine...A new Cenozoic geology and glacial history paradigm (new paradigm), fundamentally different from the accepted Cenozoic geology and glacial history paradigm (accepted paradigm), describes a thick North American continental icesheet (located where continental icesheets are usually reported to have been) which by deep erosion and uplift of surrounding regions created and occupied a deep “hole” (the accepted paradigm does not see this thick ice sheet or the deep “hole”). Unusual erosional landform features in the southeast Oklahoma Pontotoc County region including the asymmetric Canadian-Red River drainage divide, a large escarpment-surrounded basin in which most south-oriented Clear Boggy Creek headwaters begin, and a large escarpment-surrounded upland on which the south-oriented Blue River begins, are used to test the new paradigm’s ability to use large and prolonged south-oriented melt water floods to explain previously unexplained or poorly explained detailed topographic map drainage system and erosional landform evidence. Numerous low points (referred to as divide crossings) indicate large and prolonged south-oriented melt water floods did flow across what is now the Canadian-Red River drainage divide (an interpretation also consistent with Clear Boggy Creek escarpment-surrounded basin and Blue River escarpment-surrounded upland shapes). The new paradigm described massive and prolonged melt water floods also account for previously unrecognized deep regional erosion (which is determinable from detailed topographic map evidence). East-oriented Canadian River valley headward erosion (from the Arkansas River valley) diverted the long-lived south-oriented meltwater floods to the Arkansas River valley and to what ultimately became the deep “hole’s” only southern exit. Previous southeast Oklahoma drainage history interpretations (made from the accepted paradigm perspective in which Rocky Mountain glacier melt water flowed to east-oriented rivers) do not provide adequate water volumes or flow directions to explain the detailed topographic map drainage system and erosional landform evidence, which the new paradigm’s massive and prolonged south-oriented melt water floods do explain.展开更多
The Lancnag Mekong River is the most important international river across China and Southeast Asia, If it is developed according to 'Great Mekong Subregional Cooperation Plan' [9] prepared by ADB, the area di...The Lancnag Mekong River is the most important international river across China and Southeast Asia, If it is developed according to 'Great Mekong Subregional Cooperation Plan' [9] prepared by ADB, the area directly affected will be up to over 2.32 million km 2, the population over 220 million, and the natural environment, and socio-economic conditions within a large area will be greatly changed. 'Agreement on Cooperation for Sustainable Development of Mekong Basin' signed by the four riparian countries along the lower Mekong River on April 5, 1995 provides a new opportunity for sustainable development of the Basin. According to preliminary analysis, if the multipurpose utilization of the water resources is the target for carrying out integrated planning and management, and the efforts are made 1) to focus on energy exploitation on the Lancang River Mainstream and the tributaries of the lower Mekong River; 2) to build gated weirs at Tonle Sam; 3) to construct spillways at the Mekong Delta; 4) to facilitate flood dykes in big cities and on both banks of the mainstream which are concentrated with population and farmland and liable to be flooded, and 5) to strengthen networks for forecasting hydrological and meteorological conditions, then all problems such as power demand, irrigation, flood, salt water intrusion as well as acid water erosion to soil could be solved without constructing large cascaded stations and dams on the lower Mekong Mainstream. This will not only avoid input of great number of fund, large scale resettlement and land inundation, but also prevent aquatic organisms living in Mekong River from being injured due to dam construction, and promote the sustainable development of the Basin.展开更多
The surface uplift of the Tibetan Plateau(TP)and its geomorphology evolution has triggered aridification of Asia's interior and drainage development at the eastern margin of the plateau.However,how the pre-Cenozoi...The surface uplift of the Tibetan Plateau(TP)and its geomorphology evolution has triggered aridification of Asia's interior and drainage development at the eastern margin of the plateau.However,how the pre-Cenozoic early growth histories of the TP impact the drainage system and climate is poorly constrained.The Late Mesozoic Lacustrine evaporite-bearing basins on the eastern margin of the TP record significant information on the uplift of the source terranes,source-to-sink system development and climate change.In this study,we presented detrital zircon U-Pb ages from the Upper Cretaceous Yunlong Formation in the Lanping Basin,as well as Hf isotopic,petrographic,direct statistical,and multidimensional scaling analyses,and use them to characterize the provenance and reconstruct the drainage system.All of the samples have five major age peaks at 200-290 Ma,400-490 Ma,750-1000 Ma,1750-1950 Ma,and 2400-2600 Ma with mostly negativeε_(Hf)(t)values(81%).We infer the sediments are primarily derived from recycled sediments of the Songpan-Garze terrane,and partly from the Sichuan Basin and the Southern Qiangtang terrane,as well as the exposed magmatic rocks of the Yidun Arc and SongpanGarze terrane.The provenance features of the contemporaneous sediments from the Sichuan,Xichang,Chuxiong,and Simao basins indicate a complex hierarchical drainage pattern on the eastern margin of the TP during the Late Cretaceous.The hierarchical drainage system exhibits a complete gradational cycle of lake-basin types from overfilled freshwater Sichuan Basin through balanced fill saline Xichang Basin and underfilled hypersaline Chuxiong,Lanping,Simao,and Khorat Plateau basins from proximal to distal.The early growth of the TP primarily controlled the drainage and lake-basin evolution by not only causing the uplift and exhumation of the source areas and providing large amounts of clastic material to the proximal sub-drainage areas but also intensifying the aridity and deposition of evaporites.展开更多
Based on a large number of drilling,logging,seismic and production data,the differential structures of karst zone and hydrocarbon distribution in different paleogeomorphic units of the Tahe area,Tarim Basin,are discus...Based on a large number of drilling,logging,seismic and production data,the differential structures of karst zone and hydrocarbon distribution in different paleogeomorphic units of the Tahe area,Tarim Basin,are discussed by analyzing the karst drainages and flowing channels.The karst paleogeomorphy of Ordovician in Tahe area is composed of watershed,karst valley and karst basin.The watershed has epikarst zone of 57.8 m thick on average and vadose karst zone of 115.2 m thick on average with dense faults,fractures and medium-small fracture-caves,and 76.5%of wells in this area have cumulative production of more than 5×10^(4) t per well.The karst valleys have epikarst zone,vadose karst zone and runoff karst zone,with an average thickness of 14.6,26.4 and 132.6 m respectively.In the runoff karst zone,the caves of subsurface river are mostly filled by fine sediment,with a filling rate up to 86.8%,and 84.9%of wells in this area have cumulative production of less than 2×10^(4) t per well.The karst basin has no karst zone,but only fault-karst reservoirs in local fault zones,which are up to 600 m thick and closely developed within 1 km around faults.Different karst landforms have different water flowing pattern,forming different karst zone structures and resulting in differential distribution of oil and gas.The watershed has been on the direction of oil and gas migration,so medium-small sized connected fracture-caves in this area have high filling degree of oil and gas,and most wells in this area have high production.Most caves in subsurface river are filled due to strong sedimentation and transportation of the river,so the subsurface river sediment has low hydrocarbon abundance and more low production oil wells.The faults linking source rock are not only the water channels but also the oil-gas migration pathways,where the karst fractures and caves provide huge reservoir space for oil and gas accumulation.展开更多
基金Supported by National Science and Technology Support Project(2008BAK49B07)~~
文摘In this study,SRTM DEM data and ASTER GDEM data were used as the basic topographic data,and Arc Hydro Tools was utilized for extension module so as to study on extracting digital drainage network of watershed based on surface runoff model,as well as to compare the two extracted results.The result showed that through the introduction of drainage density parameter to determine the river drainage area threshold,the both extracted drainages showed the goodness-of-fit with the factual drainage network on 1∶250 000 scale topographic map,and the extracted digital river could be used in practical operation of the risk assessment model of mountain torrents disaster in Liaohe basin.
基金Supported by The High-level Personnel Special Assistance Genome Project of Guizhou Province(TJZF(2009)25)Science and Technology Fund of Guizhou Province((2009)2251)The Key Projectof Chinese Ministry of Education.(210201)~~
文摘[Objective]Study on carbon sink effects in Conversion of Farmland to Forest Project in Hongfenghu drainage basin in order to provide evidences for assessing carbon sink potential of conversion of farmland to forest in Guizhou Province.[Method]By investigating the implement of Conversion of Farmland to Forest Project in Hongfenghu drainage basin from 2000 to 2006,the carbon sink amount and effect of seven main tree species in the foreat region like Cunninghamia lanceolata,Cryptomeria fortunei,Amygdalus persica,Prunus salicina,Armeniaca vulgaris,Camptotheca acuminate and Catalpa bungei were calculated,based on which the amount of forest carbon sinks in Hongfenghu drainage basin in 2015 was estimated.[Result]Biomass storage and carbon sink amount in middle and young aged forests were increasing over time from 2000 to 2006,which reached 1.05×107 kg by 2006 and would engage more and more potential.Cunninghamia lanceolata has the superior carbon sink capacity in the seven tree species in the research region,of which the amount of carbon sink per unit area will be 106.51 t/hm2 by 2015,followed by Cryptomeria fortunei with the amount of carbon sink per unit area by 99.42 t/hm2.Armeniaca vulgaris has the weakest carbon sink capacity of all the seven species with the amount of 13.03 t/hm2.The total amount of carbon sink in seven tree species was 2.35×107 kg,while the average amount of carbon sink per unit area was 26.17 t/hm2,which could produced economic benefit of 7.17×106 yuan calculated on the price of 305.0 yuan/t or 5.91×106 yuan calculated on the price of 254.1 yuan/t.[Conclusion]Economic benefits of carbon sink effects of Conversion of Farmland to Forest Project in Hongfenghu drainage basin were great with huge appreciation potential.
基金National Natural Science Foundation of China, No.40335046
文摘The Heihe River drainage basin is one of the endangered ecological regions of China. The shortage of water resources is the bottleneck, which constrains the sustainable development of the region. Many scholars in China have done researches concerning this problem. Based on previous researches, this paper analyzed characteristics, tendencies, and causes of annual runoff variations in the Yingluo Gorge (1944-2005) and the Zhengyi Gorge (1954-2005), which are the boundaries of the upper reaches, the middle reaches, and the lower reaches of the Heihe River drainage basin, by wavelet analysis, wavelet neural network model, and GIS spatial analysis. The results show that: (1) annual runoff variations of the Yingluo Gorge have principal periods of 7 years and 25 years, and its increasing rate is 1.04 m^3/s.10y; (2) annual runoff variations of the Zhengyi Gorge have principal periods of 6 years and 27 years, and its decreasing rate is 2.25 m^3/s.10y; (3) prediction results show that: during 2006-2015, annual runoff variations of the Yingluo and Zhengyi gorges have ascending tendencies, and the increasing rates are respectively 2.04 m^3/s.10y and 1.61 m^3/s.10y; (4) the increase of annual runoff in the Yingluo Gorge has causal relationship with increased temperature and precipitation in the upper reaches, and the decrease of annual runoff in the Zhengyi Gorge in the past decades was mainly caused by the increased human consumption of water resources in the middle researches. The study results will provide scientific basis for making rational use and allocation schemes of water resources in the Heihe River drainage basin.
基金Under the auspices of Youth Innovation Foundation of East China Normal University,China.
文摘ABSTRACT: The present study reconstructs an annual dry/wet grade series from 960 A. D. to 1992 A. D. in the Tai-hu drainage basin of eastern coast, China by collecting historical climatic records, to examine the climate periodicity and climate jumps. Power Spectrum analysis reveals that the dry/wet climate in the study area was a superposed phenomenon with the major period of quasi-100-year, and several other notable periods. These periods were supposed to be closely linked with the celestial activity. Climate jumps are detected using moving t-test. The two abrupt changes around 1247 - 1263 A. D. and 1618 - 1635 A. D. are proved as regional events. The 14th to 15th century appeared as the wettest period during the last 1000 years in the Taihu drainage basin. These are interpreted as the consequence of east Asia climate change.
文摘This study investigate the relationships between geomorphometric properties and the minimum low flow discharge of undisturbed drainage basins in the Taman Bukit Cahaya Seri Alam Forest Reserve, Peninsular Malaysia. The drainage basins selected were third-order basins so as to facilitate a common base for sampling and performing an unbiased statistical analyses. Three levels of relationships were observed in the study. Significant relationships existed between the geomorphometric properties as shown by the correlation network analysis; secondly, individual geomorphometric properties were observed to influence minimum flow discharge; and finally, the multiple regression model set up showed that minimum flow discharge(Q min) was dependent of basin area(AU), stream length(LS), maximum relief(Hmax), average relief(HAV) and stream frequency(SF). These findings further enforced other studies of this nature that drainage basins were dynamic and functional entities whose operations were governed by complex interrelationships occurring within the basins. Changes to any of the geomorphometric properties would influence their role as basin regulators thus influencing a change in basin response. In the case of the basin's minimum low flow, a change in any of the properties considered in the regression model influenced the “time to peak' of flow. A shorter time period would mean higher discharge, which is generally considered the prerequisite to flooding. This research also conclude that the role of geomorphometric properties to control the water supply within the stream through out the year even though during the drought and less precipitations months. Drainage basins are sensitive entities and any deteriorations involve will generate reciprocals and response to the water supply as well as the habitat within the areas.
文摘The evolution of southwest Montana’s Big Hole and Beaverhead River drainage basins is determined from topographic map evidence related to mountain passes crossing what are today high altitude drainage divides including North America’s east-west Continental Divide. Map evidence, such as orientations of valleys leading away from mountain passes (and saddles) and barbed tributaries found along the downstream drainage routes, is used to reconstruct flow directions of streams and rivers that once crossed the present-day high mountain divides. Large south-oriented anastomosing complexes of diverging and converging channels are interpreted to have eroded what are today closely spaced passes and saddles now notched into high mountain ridges. Water in those south-oriented channels is interpreted to have flowed across emerging mountains and subsiding basins. Headward erosion of deeper southeast-oriented valleys, assisted by crustal warping, concentrated south-oriented water in fewer and deeper valleys as the water flowed from southwest Montana into what are today Idaho and the Snake River drainage basin. Headward erosion of the Big Hole River valley between the emerging Anaconda and Pioneer Mountains, also assisted by crustal warping, reversed all Big Hole Basin drainage so as to create the north-, east-, and south-oriented Big Hole River drainage route. A final and even more major reversal of flow in the present-day north-oriented Montana Missouri River valley, with the assistance of additional crustal warping, next ended all remaining flow to Idaho and the Snake River drainage basin and reversed and captured all drainage in the present-day north-oriented Big Hole, Beaverhead, and Red Rock River drainage basins. The observed map evidence indicates that prior to the final flow reversal events, large volumes of south-oriented water flowed across southwest Montana’s Big Hole and Beaverhead River drainage basins.
文摘The uplift of the Arabian Shield and the opening of the Red Sea led to the development of steep drainage systems in the Western Arabian Peninsula. Although the Peninsula has been studied from a geological perspective, in relation to oil production, plate tectonics and eolian systems such as sand dunes, the steep mountainous drainage basins have received much less attention. This paper aims to assess the characteristics and development of 36 drainage basins in the Western Arabian Peninsula, using a digital elevation model (DEM), principal component analysis (PCA), and hierarchical cluster analysis (CA). Three major principal components (PC1 to PC3) are found to explain 73% of total variance. CA divided the basins into two or four groups. The division by CA strongly reflects PC1, showing that the two analyses give comparable results. PC1 strongly reflects basin dimensions and drainage texture, and their positive correlations indicate the significant effect of basin relief and slope on mass wasting and limited stream incision in small basins under an arid climate. PC2 mainly reflects the effect of bedrock geology, suggesting that volcanic rocks tend to produce more elongated and less eroded immature basins than crystalline rocks do. PC3 mainly reflects the basin relief and slope and the length of each stream segment, which may also reflect the effect of mass wasting on stream development.
文摘Morphometric analysis is mathematical evaluation and measurement of the earth’s shape, surface and its landform’s dimension. Morphometric analysis of Dhund river basin in Jaipur district of Rajasthan India has been carried out to evaluate various morphometric parameters following the linear, areal and relief aspects. The drainage basin, which covers a total area of about 1828 km<sup>2</sup> lies in eastern part of the district with maximum and minimum elevation of 603 m and 214 m respectively. Morphotectonic parameters like Hypsometric Integral, Sinuosity index and Asymmetry Factor have also been computed to identify the tectonic characteristics of the drainage basin. Primary and secondary data such as SOI topographic map, Cartosat-1 DEM and other relevant data were utilized. ArcGIS software (Arc Map 10.2) was used for geo-referencing of topographic maps, delineation of watershed and preparation of DEM, slope and drainage network. The basin is 6th order drainage basin having dendritic pattern of drainage network. A relatively lower mean value of Bifurcation ratio suggests that the drainage basin is formed by uniformed materials. Drainage basin area has little elongated shape and is less prone to floods. Basin has different erosional stages and levels of tectonic activity, Moderate Meandering and unstable setting.
文摘A Systematic Study on Land (SSL), aiming at the investigation of the land complex, isone of the important parts of integrated physical geography. With systematic theory as guid-ance, the dissertaton carries out the comprehensive and systematic study of a series ofsubsystems like land classification, land structure analysis, comprehensive physicalregionalization, land evaluation, reasonable planning of land utilization as well as popula-
基金the National Natural Science Foundation of China(42172114,41772102 and 41402171)National Science Foundation of the United States(EAR 1620595)the China Scholarship Council(201706455043).
文摘Tectonic transition from a syn-rift stage to subsequent post-rift stage is an important mechanism in the evolution of extensional basins.The sedimentary infill records the crustal response to this process.We have obtained new detrital zircon U-Pb and Lu-Hf signatures from the Lower Cretaceous stratigraphic successions encompassing the commonly accepted syn-to post-rift transition boundary,the T4 unconformity,in the Songliao Basin,NE China.These constrain the Songliao Basin’s evolution from its center to distal margins,providing insights into the sediment provenance and dispersal pattern over the tectonic transition.Analysis of zircons from the syn-rift(the Shahezi and Yingcheng formations)and immediate post-rift(the Lower and Middle Denglouku Formation)stages reveals Phanerozoic age populations with positiveƐHf(t)values,which were derived from the proximal juvenile mantle-derived melt origin bedrocks of the Songliao Block.In contrast,the overlying samples from the Upper Denglouku Formation deposited in the subsequent post-rift stage contain exotic and ancient zircon populations with ages of 2.5 Ga&1.8 Ga and complex hafnium signatures,characteristic of a mixed origin.These are interpreted to be transported from distant cratonic terranes via larger drainage networks.It is obvious that the sediment dispersal pattern switched from being a local and hydrologically closed“intraregional”pattern to a“transcontinental”pattern during the transition.The time lag between the development of the T4 unconformity and the drainage reorganization also ensures a distinguishable3 Myr(106103 Ma,Late Albian)transition period of regional extent.During this transition stage,syn-rift faulting was replaced by postrift thermal subsidence,exhibiting a uniform sag configuration.Our new findings are important for understanding other continental rift basins during syn-to post-rift transition,which often demonstrates a complex interaction between the linkage and integration of sub-basins,and the reorganization of fluvial drainages and catchment systems.
文摘In karst area water deficit is one of the main factors constraining sustainable economic development. In 1979 the comprehensive karstic observational field station was set up in Houzhai drainage basin located,\ in Puding county of Guizhou Province, which can represent most of the small karst drainage basins on the dividing line of the Guizhou Plateau. Geomorphology, water resources and water chemistry were investigated and observed. Based on comparisons of water supply with water demand and analysis of the main problems in water exploitation and utilization. it is found out that the water deficiency was not directly caused by the scarcity of natural water resources. The true reason is the insufficient capacity of water supply caused by the dismatch of the water and soil water resources which can be dealt with by building more irrigation works. Some solutions such as to build scientific basis for water exploitation and utilization and sustainable economic development in karst drainage basins on dividing line of the Guizhou Plateau.
文摘A Hydrological model is proposed to study the spatial and temporal variability of the water budget components of large drainage basin systems from atmospheric and terrestrial water balances. In order to understand the water balances that include, surface runoff, actual evapotranspiration and soil moisture, a GIS-based simple water balance model which is referred as Hydrological Model from Hybrid Atmospheric and Terrestrial Water Balances with acronym HATWAB is presented. The spatio-temporal climatology database was created from a network of climate stations from CLIMWAT data base to reconstruct the monthly primary inputs to HATWAB model, rainfall and potential evapotranspiration. The modeling principles and HATWAB model are demonstrated using the Limpopo and Congo basins in Africa. The model was used to simulate water balance components by taking rainfall-runoff processes in the basin including soil-texture controlled moisture in the terrestrial system, and the vertical integrated moisture convergence that accounts for the net water vapor flux from the basins in order to close the hydrologic water budget.
文摘In Karst drainage basins, there are the ground water and underground water exchanging frequently, and the shortage of water resources due to having the special double aquifer mediums and unique surface and subsurface river systematic structure. This paper is to select 20 research sampling areas coming fromGuizhouProvince, and according to the spectral characteristics of the catchment water-holding mediums and vegetations, and using the remote sensing technique, extract the watershed vegetation index. According to the principle of principal component analysis, using the software of Spss and Matlab is to analyze the impacts of watershed vegetation type on the catchment water-holding ability, and establish the principal component analysis function. Studies have shown that: 1) the watershed vegetation coverage rate plays an important role in Karst basin water-holding ability;2) the catchment water-holding ability is the comprehensive reflection and manifestation of the Catchment Water-storing Capacity (CWC);3) it is much better effects and higher accuracy to monitor/forecast the catchment water-holding volume by using the vegetation indices.
文摘While not usually stated, detailed topographic maps show well-mapped anomalous drainage system and other erosional landform evidence the accepted North American Cenozoic geologic and glacial history paradigm (accepted paradigm) does not permit geomorphologists to satisfactorily explain. A new and fundamentally different paradigm able to explain the drainage system and other erosional landform evidence has recently emerged, but requires what the accepted paradigm considers to be the preglacial (and probably mid-Cenozoic) Bell River drainage system to have formed on a melting continental ice sheet’s floor. The new paradigm’s melting ice sheet had previously eroded bedrock underneath it and caused crustal warping that raised continental regions and mountain ranges so as to create and occupy a deep “hole” while massive and prolonged meltwater floods flowed across rising continental regions and mountain ranges to the south. The new paradigm leads to a completely different middle Cenozoic geologic and glacial history than the accepted paradigm describes and the two paradigms are analyzed according to good science expectations such as using evidence anyone can see, applying common sense logic during each research step, producing consistent results, and simplicity of paradigm generated explanations. The new paradigm uses topographic map evidence anyone can see, appears to use common sense logic during each research step, and produces remarkably consistent results leading to a simpler Cenozoic northern Missouri River drainage basin region geologic and glacial history than what the accepted paradigm describes. Further work is needed to test the new paradigm’s ability to explain drainage system and erosional landform evidence in other geographic regions such as in the Ohio River drainage basin.
基金supported by the Project of the National Natural Science Foundation of China (40671025)the Knowledge Innovation Project of the Chinese Academy of Sciences (No. KZCX2-YW-302)
文摘Depressions in landscapes function as buffers for water and sediment. A landscape with depressions has less runoff, less erosion and more sedimentation than that without depressions. Sinks in digital elevation models (DEMs) can be considered the real features that represent depressions in actual landscapes or spurious features that result from errors in DEM creation. In many hydrological and erosion models, all sinks are considered as spurious features and, as a result, these models do not deal with the sinks that represent real depressions. Consequently, the surface runoff and erosion are overestimated due to removing the depressions. Aiming at this problem, this paper presents a new method, which deal with the sinks that represent real depressions. The drainage network is extracted without changing the original DEM. The method includes four steps: detecting pits, detecting depressions, merging depressions, and extracting drainage network. Because the elevations of grid cells are not changed, the method can also avoid producing new fiat areas, which are always produced by the conventional filling methods. The proposed method was applied to the Xihanshui River basin, the upper reach of the Jialingjiang River basin, China, to automatically extract the drainage network based on DEM. The extracted drainage network agrees well with the reality and can be used for further hydrologic analysis and erosion estimation.
文摘A new Cenozoic geology and glacial history paradigm (new paradigm), fundamentally different from the accepted Cenozoic geology and glacial history paradigm (accepted paradigm), describes a thick North American continental icesheet (located where continental icesheets are usually reported to have been) which by deep erosion and uplift of surrounding regions created and occupied a deep “hole” (the accepted paradigm does not see this thick ice sheet or the deep “hole”). Unusual erosional landform features in the southeast Oklahoma Pontotoc County region including the asymmetric Canadian-Red River drainage divide, a large escarpment-surrounded basin in which most south-oriented Clear Boggy Creek headwaters begin, and a large escarpment-surrounded upland on which the south-oriented Blue River begins, are used to test the new paradigm’s ability to use large and prolonged south-oriented melt water floods to explain previously unexplained or poorly explained detailed topographic map drainage system and erosional landform evidence. Numerous low points (referred to as divide crossings) indicate large and prolonged south-oriented melt water floods did flow across what is now the Canadian-Red River drainage divide (an interpretation also consistent with Clear Boggy Creek escarpment-surrounded basin and Blue River escarpment-surrounded upland shapes). The new paradigm described massive and prolonged melt water floods also account for previously unrecognized deep regional erosion (which is determinable from detailed topographic map evidence). East-oriented Canadian River valley headward erosion (from the Arkansas River valley) diverted the long-lived south-oriented meltwater floods to the Arkansas River valley and to what ultimately became the deep “hole’s” only southern exit. Previous southeast Oklahoma drainage history interpretations (made from the accepted paradigm perspective in which Rocky Mountain glacier melt water flowed to east-oriented rivers) do not provide adequate water volumes or flow directions to explain the detailed topographic map drainage system and erosional landform evidence, which the new paradigm’s massive and prolonged south-oriented melt water floods do explain.
文摘The Lancnag Mekong River is the most important international river across China and Southeast Asia, If it is developed according to 'Great Mekong Subregional Cooperation Plan' [9] prepared by ADB, the area directly affected will be up to over 2.32 million km 2, the population over 220 million, and the natural environment, and socio-economic conditions within a large area will be greatly changed. 'Agreement on Cooperation for Sustainable Development of Mekong Basin' signed by the four riparian countries along the lower Mekong River on April 5, 1995 provides a new opportunity for sustainable development of the Basin. According to preliminary analysis, if the multipurpose utilization of the water resources is the target for carrying out integrated planning and management, and the efforts are made 1) to focus on energy exploitation on the Lancang River Mainstream and the tributaries of the lower Mekong River; 2) to build gated weirs at Tonle Sam; 3) to construct spillways at the Mekong Delta; 4) to facilitate flood dykes in big cities and on both banks of the mainstream which are concentrated with population and farmland and liable to be flooded, and 5) to strengthen networks for forecasting hydrological and meteorological conditions, then all problems such as power demand, irrigation, flood, salt water intrusion as well as acid water erosion to soil could be solved without constructing large cascaded stations and dams on the lower Mekong Mainstream. This will not only avoid input of great number of fund, large scale resettlement and land inundation, but also prevent aquatic organisms living in Mekong River from being injured due to dam construction, and promote the sustainable development of the Basin.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.41572067,91855104,41802111)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA 20170301)the National Key Project for Basic Research of China(Grant No.2011CB403007)。
文摘The surface uplift of the Tibetan Plateau(TP)and its geomorphology evolution has triggered aridification of Asia's interior and drainage development at the eastern margin of the plateau.However,how the pre-Cenozoic early growth histories of the TP impact the drainage system and climate is poorly constrained.The Late Mesozoic Lacustrine evaporite-bearing basins on the eastern margin of the TP record significant information on the uplift of the source terranes,source-to-sink system development and climate change.In this study,we presented detrital zircon U-Pb ages from the Upper Cretaceous Yunlong Formation in the Lanping Basin,as well as Hf isotopic,petrographic,direct statistical,and multidimensional scaling analyses,and use them to characterize the provenance and reconstruct the drainage system.All of the samples have five major age peaks at 200-290 Ma,400-490 Ma,750-1000 Ma,1750-1950 Ma,and 2400-2600 Ma with mostly negativeε_(Hf)(t)values(81%).We infer the sediments are primarily derived from recycled sediments of the Songpan-Garze terrane,and partly from the Sichuan Basin and the Southern Qiangtang terrane,as well as the exposed magmatic rocks of the Yidun Arc and SongpanGarze terrane.The provenance features of the contemporaneous sediments from the Sichuan,Xichang,Chuxiong,and Simao basins indicate a complex hierarchical drainage pattern on the eastern margin of the TP during the Late Cretaceous.The hierarchical drainage system exhibits a complete gradational cycle of lake-basin types from overfilled freshwater Sichuan Basin through balanced fill saline Xichang Basin and underfilled hypersaline Chuxiong,Lanping,Simao,and Khorat Plateau basins from proximal to distal.The early growth of the TP primarily controlled the drainage and lake-basin evolution by not only causing the uplift and exhumation of the source areas and providing large amounts of clastic material to the proximal sub-drainage areas but also intensifying the aridity and deposition of evaporites.
基金Supported by the China National Science and Technology Major Project(2016ZX05014002-007)National Natural Science Foundation of China(U1663204/42072171/41772103)。
文摘Based on a large number of drilling,logging,seismic and production data,the differential structures of karst zone and hydrocarbon distribution in different paleogeomorphic units of the Tahe area,Tarim Basin,are discussed by analyzing the karst drainages and flowing channels.The karst paleogeomorphy of Ordovician in Tahe area is composed of watershed,karst valley and karst basin.The watershed has epikarst zone of 57.8 m thick on average and vadose karst zone of 115.2 m thick on average with dense faults,fractures and medium-small fracture-caves,and 76.5%of wells in this area have cumulative production of more than 5×10^(4) t per well.The karst valleys have epikarst zone,vadose karst zone and runoff karst zone,with an average thickness of 14.6,26.4 and 132.6 m respectively.In the runoff karst zone,the caves of subsurface river are mostly filled by fine sediment,with a filling rate up to 86.8%,and 84.9%of wells in this area have cumulative production of less than 2×10^(4) t per well.The karst basin has no karst zone,but only fault-karst reservoirs in local fault zones,which are up to 600 m thick and closely developed within 1 km around faults.Different karst landforms have different water flowing pattern,forming different karst zone structures and resulting in differential distribution of oil and gas.The watershed has been on the direction of oil and gas migration,so medium-small sized connected fracture-caves in this area have high filling degree of oil and gas,and most wells in this area have high production.Most caves in subsurface river are filled due to strong sedimentation and transportation of the river,so the subsurface river sediment has low hydrocarbon abundance and more low production oil wells.The faults linking source rock are not only the water channels but also the oil-gas migration pathways,where the karst fractures and caves provide huge reservoir space for oil and gas accumulation.