A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is d...A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is derived on anisotropic meshes without referring to the traditional nonclassical elliptic projection.展开更多
The object of this paper is to investigate the superconvergence properties of finite element approximations to parabolic and hyperbolic integro-differential equations. The quasi projection technique introduced earlier...The object of this paper is to investigate the superconvergence properties of finite element approximations to parabolic and hyperbolic integro-differential equations. The quasi projection technique introduced earlier by Douglas et al. is developed to derive the O(h2r) order knot superconvergence in the case of a single space variable, and to show the optimal order negative norm estimates in the case of several space variables.展开更多
A highly efficient H1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation ...A highly efficient H1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation and asymptotic expansions are studied. Then, the superconvergence of order O(h^2) for both the original variable u in H1 (Ω) norm and the flux p = u in H(div, Ω) norm is derived through the interpolation post processing technique. Furthermore, with the help of the asymptotic expansions and a suitable auxiliary problem, the extrapolation solutions with accuracy O(h^3) are obtained for the above two variables. Finally, some numerical results are provided to confirm validity of the theoretical analysis and excellent performance of the proposed method.展开更多
An A. D. I. Galerkin scheme for three-dimensional nonlinear parabolic integro-differen-tial equation is studied. By using alternating-direction, the three-dimensional problem is reduced to a family of single space var...An A. D. I. Galerkin scheme for three-dimensional nonlinear parabolic integro-differen-tial equation is studied. By using alternating-direction, the three-dimensional problem is reduced to a family of single space variable problems, the calculation is simplified; by using a local approxima-tion of the coefficients based on patches of finite elements, the coefficient matrix is updated at each time step; by using Ritz-Volterra projection, integration by part and other techniques, the influence coming from the integral term is treated; by using inductive hypothesis reasoning, the difficulty coming from the nonlinearity is treated. For both Galerkin and A. D. I. Galerkin schemes the con-vergence properties are rigorously demonstrated, the optimal H^1-norm and L^2-norm estimates are obtained.展开更多
Adaptive space-time finite element method, continuous in space but discontinuous in time for semi-linear parabolic problems is discussed. The approach is based on a combination of finite element and finite difference ...Adaptive space-time finite element method, continuous in space but discontinuous in time for semi-linear parabolic problems is discussed. The approach is based on a combination of finite element and finite difference techniques. The existence and uniqueness of the weak solution are proved without any assumptions on choice of the spacetime meshes. Basic error estimates in L-infinity (L-2) norm, that is maximum-norm in time, L-2-norm in space are obtained. The numerical results are given in the last part and the analysis between theoretic and experimental results are obtained.展开更多
In this paper,we present a two-grid discretization scheme for semilinear parabolic integro-differential equations by H1-Galerkin mixed finite element methods.We use the lowest order Raviart-Thomas mixed finite element...In this paper,we present a two-grid discretization scheme for semilinear parabolic integro-differential equations by H1-Galerkin mixed finite element methods.We use the lowest order Raviart-Thomas mixed finite elements and continuous linear finite element for spatial discretization,and backward Euler scheme for temporal discretization.Firstly,a priori error estimates and some superclose properties are derived.Secondly,a two-grid scheme is presented and its convergence is discussed.In the proposed two-grid scheme,the solution of the nonlinear system on a fine grid is reduced to the solution of the nonlinear system on a much coarser grid and the solution of two symmetric and positive definite linear algebraic equations on the fine grid and the resulting solution still maintains optimal accuracy.Finally,a numerical experiment is implemented to verify theoretical results of the proposed scheme.The theoretical and numerical results show that the two-grid method achieves the same convergence property as the one-grid method with the choice h=H^(2).展开更多
H1-Galerkin nonconforming mixed finite element methods are analyzed for integro-differential equation of parabolic type.By use of the typical characteristic of the elements,we obtain that the Galerkin mixed approximat...H1-Galerkin nonconforming mixed finite element methods are analyzed for integro-differential equation of parabolic type.By use of the typical characteristic of the elements,we obtain that the Galerkin mixed approximations have the same rates of convergence as in the classical mixed method,but without LBB stability condition.展开更多
In this paper a new approach for time discretization of an integro-differential equation of parabolic type is proposed. The methods are based on the backward-Euler and Crank-Nicolson Schemes but the memory and computa...In this paper a new approach for time discretization of an integro-differential equation of parabolic type is proposed. The methods are based on the backward-Euler and Crank-Nicolson Schemes but the memory and computational requirements are greatly reduced without assuming more regularities on the solution u.展开更多
In this paper, in the sense of the definition of almost periodicity given by H.Bohr using fixed-point principle, we investigate the existence and uniqueness of quadratic mean almost periodic solutions to semi-linear s...In this paper, in the sense of the definition of almost periodicity given by H.Bohr using fixed-point principle, we investigate the existence and uniqueness of quadratic mean almost periodic solutions to semi-linear stochastic integro-differential evolution equations associated with abstract Volterra equations. Some examples are also given to illustrate our theory.展开更多
In this paper,the numerical methods for semi-linear stochastic delay integro-difFerential equations are studied.The uniqueness,existence and stability of analytic solutions of semi-linear stochastic delay integro-diff...In this paper,the numerical methods for semi-linear stochastic delay integro-difFerential equations are studied.The uniqueness,existence and stability of analytic solutions of semi-linear stochastic delay integro-differential equations are studied and some suitable conditions for the mean-square stability of the analytic solutions are also obtained.Then the numerical approximation of exponential Euler method for semi-linear stochastic delay integro-differential equations is constructed and the convergence and the stability of the numerical method are studied.It is proved that the exponential Euler method is convergent with strong order 1/2 and can keep the mean-square exponential stability of the analytical solutions under some restrictions on the step size.In addition,numerical experiments are presented to confirm the theoretical results.展开更多
In this paper, we derive a posteriori error estimators for the constrained optimal control problems governed by semi-linear parabolic equations under some assumptions. Then we use them to construct reliable and effici...In this paper, we derive a posteriori error estimators for the constrained optimal control problems governed by semi-linear parabolic equations under some assumptions. Then we use them to construct reliable and efficient multi-mesh adaptive finite element algorithms for the optimal control problems. Some numerical experiments are presented to illustrate the theoretical results.展开更多
In this paper,we study the mathematical formulation for an optimal control problem governed by a linear parabolic integro-differential equation and present the optimality conditions.We then set up its weak formulation...In this paper,we study the mathematical formulation for an optimal control problem governed by a linear parabolic integro-differential equation and present the optimality conditions.We then set up its weak formulation and the finite element approximation scheme.Based on these we derive the a priori error estimates for its finite element approximation both in H1 and L^(2)norms.Furthermore some numerical tests are presented to verify the theoretical results.展开更多
In this article, two block-centered finite difference schemes are introduced and analyzed to solve the parabolic integro-differential equation arising in modeling non-Fickian flow in porous media. One scheme is Euler ...In this article, two block-centered finite difference schemes are introduced and analyzed to solve the parabolic integro-differential equation arising in modeling non-Fickian flow in porous media. One scheme is Euler backward scheme with first order accuracy in time increment while the other is Crank-Nicolson scheme with second order accuracy in time increment. Stability analysis and second-order error estimates in spatial meshsize for both pressure and velocity in discrete L^2 norms are established on non-uniform rectangular grid. Numerical experiments using the schemes show that the convergence rates are in agreement with the theoretical analysis.展开更多
基金Supported by the National Natural Science Foundation of China (10671184)
文摘A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is derived on anisotropic meshes without referring to the traditional nonclassical elliptic projection.
基金The NNSF (99200204) of Liaoning Province, China.
文摘The object of this paper is to investigate the superconvergence properties of finite element approximations to parabolic and hyperbolic integro-differential equations. The quasi projection technique introduced earlier by Douglas et al. is developed to derive the O(h2r) order knot superconvergence in the case of a single space variable, and to show the optimal order negative norm estimates in the case of several space variables.
基金Project supported by the National Natural Science Foundation of China(Nos.10971203,11271340,and 11101381)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20094101110006)
文摘A highly efficient H1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation and asymptotic expansions are studied. Then, the superconvergence of order O(h^2) for both the original variable u in H1 (Ω) norm and the flux p = u in H(div, Ω) norm is derived through the interpolation post processing technique. Furthermore, with the help of the asymptotic expansions and a suitable auxiliary problem, the extrapolation solutions with accuracy O(h^3) are obtained for the above two variables. Finally, some numerical results are provided to confirm validity of the theoretical analysis and excellent performance of the proposed method.
文摘An A. D. I. Galerkin scheme for three-dimensional nonlinear parabolic integro-differen-tial equation is studied. By using alternating-direction, the three-dimensional problem is reduced to a family of single space variable problems, the calculation is simplified; by using a local approxima-tion of the coefficients based on patches of finite elements, the coefficient matrix is updated at each time step; by using Ritz-Volterra projection, integration by part and other techniques, the influence coming from the integral term is treated; by using inductive hypothesis reasoning, the difficulty coming from the nonlinearity is treated. For both Galerkin and A. D. I. Galerkin schemes the con-vergence properties are rigorously demonstrated, the optimal H^1-norm and L^2-norm estimates are obtained.
文摘Adaptive space-time finite element method, continuous in space but discontinuous in time for semi-linear parabolic problems is discussed. The approach is based on a combination of finite element and finite difference techniques. The existence and uniqueness of the weak solution are proved without any assumptions on choice of the spacetime meshes. Basic error estimates in L-infinity (L-2) norm, that is maximum-norm in time, L-2-norm in space are obtained. The numerical results are given in the last part and the analysis between theoretic and experimental results are obtained.
基金Science and Technology Research Project of Jilin Provincial Department of Education(JJKH20190634KJ)The work of C.M.Liu was supported by the National Natural Science Foundation of China(11901189)+5 种基金the Key Project of Hunan Provincial Education Department(19A191)L.P.Chen was supported by Natural Science Foundation of China(11501473)the Fundamental Research Funds of the Central Universities of China(2682016CX108)The work of Y.Yang was supported by National Natural Science Foundation of China Project(11671342,11771369,11931003)the Project of Scientific Research Fund of Hunan Provincial Science and Technology Department(2018JJ2374,2018WK4006,2019YZ3003)the Key Project of Hunan Provincial Department of Education(17A210).
文摘In this paper,we present a two-grid discretization scheme for semilinear parabolic integro-differential equations by H1-Galerkin mixed finite element methods.We use the lowest order Raviart-Thomas mixed finite elements and continuous linear finite element for spatial discretization,and backward Euler scheme for temporal discretization.Firstly,a priori error estimates and some superclose properties are derived.Secondly,a two-grid scheme is presented and its convergence is discussed.In the proposed two-grid scheme,the solution of the nonlinear system on a fine grid is reduced to the solution of the nonlinear system on a much coarser grid and the solution of two symmetric and positive definite linear algebraic equations on the fine grid and the resulting solution still maintains optimal accuracy.Finally,a numerical experiment is implemented to verify theoretical results of the proposed scheme.The theoretical and numerical results show that the two-grid method achieves the same convergence property as the one-grid method with the choice h=H^(2).
基金Foundation item: the National Natural Science Foundation of China (Nos. 10671184 10371113).
文摘H1-Galerkin nonconforming mixed finite element methods are analyzed for integro-differential equation of parabolic type.By use of the typical characteristic of the elements,we obtain that the Galerkin mixed approximations have the same rates of convergence as in the classical mixed method,but without LBB stability condition.
文摘In this paper a new approach for time discretization of an integro-differential equation of parabolic type is proposed. The methods are based on the backward-Euler and Crank-Nicolson Schemes but the memory and computational requirements are greatly reduced without assuming more regularities on the solution u.
文摘In this paper, in the sense of the definition of almost periodicity given by H.Bohr using fixed-point principle, we investigate the existence and uniqueness of quadratic mean almost periodic solutions to semi-linear stochastic integro-differential evolution equations associated with abstract Volterra equations. Some examples are also given to illustrate our theory.
基金This research is supported by National Natural Science Foundation of China(Project No.11901173)by the Heilongjiang province Natural Science Foundation(LH2019A030)by the Heilongjiang province Innovation Talent Foundation(2018CX17).
文摘In this paper,the numerical methods for semi-linear stochastic delay integro-difFerential equations are studied.The uniqueness,existence and stability of analytic solutions of semi-linear stochastic delay integro-differential equations are studied and some suitable conditions for the mean-square stability of the analytic solutions are also obtained.Then the numerical approximation of exponential Euler method for semi-linear stochastic delay integro-differential equations is constructed and the convergence and the stability of the numerical method are studied.It is proved that the exponential Euler method is convergent with strong order 1/2 and can keep the mean-square exponential stability of the analytical solutions under some restrictions on the step size.In addition,numerical experiments are presented to confirm the theoretical results.
文摘In this paper, we derive a posteriori error estimators for the constrained optimal control problems governed by semi-linear parabolic equations under some assumptions. Then we use them to construct reliable and efficient multi-mesh adaptive finite element algorithms for the optimal control problems. Some numerical experiments are presented to illustrate the theoretical results.
基金W.F.Shen was supported by National Natural Science Foundation of China(Grant:11326226)Nature Science Foundation of Shandong Province(No.ZR2012GM018)D.P.Yang partially was supported by National Natural Science Foundation of China,Grant:11071080.
文摘In this paper,we study the mathematical formulation for an optimal control problem governed by a linear parabolic integro-differential equation and present the optimality conditions.We then set up its weak formulation and the finite element approximation scheme.Based on these we derive the a priori error estimates for its finite element approximation both in H1 and L^(2)norms.Furthermore some numerical tests are presented to verify the theoretical results.
基金This work is supported by the National Natural Science Foundation of China Grant no. 11671233, 91330106.
文摘In this article, two block-centered finite difference schemes are introduced and analyzed to solve the parabolic integro-differential equation arising in modeling non-Fickian flow in porous media. One scheme is Euler backward scheme with first order accuracy in time increment while the other is Crank-Nicolson scheme with second order accuracy in time increment. Stability analysis and second-order error estimates in spatial meshsize for both pressure and velocity in discrete L^2 norms are established on non-uniform rectangular grid. Numerical experiments using the schemes show that the convergence rates are in agreement with the theoretical analysis.