期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
A lumped mass nonconforming finite element method for nonlinear parabolic integro-differential equations on anisotropic meshes 被引量:6
1
作者 SHI Dong-yang WANG Hui-min LI Zhi-yan Dept. of Math., Zhengzhou Univ., Zhengzhou 450052, China 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2009年第1期97-104,共8页
A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is d... A lumped mass approximation scheme of a low order Crouzeix-Raviart type noncon- forming triangular finite element is proposed to a kind of nonlinear parabolic integro-differential equations. The L2 error estimate is derived on anisotropic meshes without referring to the traditional nonclassical elliptic projection. 展开更多
关键词 nonlinear parabolic integro-differential equation nonconforming finite element anisotropic mesh lumped mass error estimate
下载PDF
Superconvergence of Finite Element Approximations to Parabolic and Hyperbolic Integro-Differential Equations 被引量:2
2
作者 张铁 李长军 《Northeastern Mathematical Journal》 CSCD 2001年第3期279-288,共10页
The object of this paper is to investigate the superconvergence properties of finite element approximations to parabolic and hyperbolic integro-differential equations. The quasi projection technique introduced earlier... The object of this paper is to investigate the superconvergence properties of finite element approximations to parabolic and hyperbolic integro-differential equations. The quasi projection technique introduced earlier by Douglas et al. is developed to derive the O(h2r) order knot superconvergence in the case of a single space variable, and to show the optimal order negative norm estimates in the case of several space variables. 展开更多
关键词 SUPERCONVERGENCE parabolic and hyperbolic integro-differential equation finite element
下载PDF
Highly efficient H^1-Galerkin mixed finite element method (MFEM) for parabolic integro-differential equation 被引量:7
3
作者 石东洋 廖歆 唐启立 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第7期897-912,共16页
A highly efficient H1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation ... A highly efficient H1-Galerkin mixed finite element method (MFEM) is presented with linear triangular element for the parabolic integro-differential equation. Firstly, some new results about the integral estimation and asymptotic expansions are studied. Then, the superconvergence of order O(h^2) for both the original variable u in H1 (Ω) norm and the flux p = u in H(div, Ω) norm is derived through the interpolation post processing technique. Furthermore, with the help of the asymptotic expansions and a suitable auxiliary problem, the extrapolation solutions with accuracy O(h^3) are obtained for the above two variables. Finally, some numerical results are provided to confirm validity of the theoretical analysis and excellent performance of the proposed method. 展开更多
关键词 parabolic integro-differential equation H1-Galerkin mixed finite elementmethod (MFEM) linear triangular element asymptotic expansion superconvergence andextrapolation
下载PDF
AN A.D.I.GALERKIN METHOD FOR NONLINEAR PARABOLIC INTEGRO-DIFFERENTIAL EQUATION USING PATCH APPROXIMATION
4
作者 崔霞 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1999年第2期209-220,共12页
An A. D. I. Galerkin scheme for three-dimensional nonlinear parabolic integro-differen-tial equation is studied. By using alternating-direction, the three-dimensional problem is reduced to a family of single space var... An A. D. I. Galerkin scheme for three-dimensional nonlinear parabolic integro-differen-tial equation is studied. By using alternating-direction, the three-dimensional problem is reduced to a family of single space variable problems, the calculation is simplified; by using a local approxima-tion of the coefficients based on patches of finite elements, the coefficient matrix is updated at each time step; by using Ritz-Volterra projection, integration by part and other techniques, the influence coming from the integral term is treated; by using inductive hypothesis reasoning, the difficulty coming from the nonlinearity is treated. For both Galerkin and A. D. I. Galerkin schemes the con-vergence properties are rigorously demonstrated, the optimal H^1-norm and L^2-norm estimates are obtained. 展开更多
关键词 NONLINEAR parabolic integro-differential equation alternating-direction finite element METHOD error estimate.
下载PDF
THE SPACE-TIME FINITE ELEMENT METHOD FOR PARABOLIC PROBLEMS 被引量:5
5
作者 LI Hong(李宏) +1 位作者 LIU Ru-xun(刘儒勋) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第6期687-700,共14页
Adaptive space-time finite element method, continuous in space but discontinuous in time for semi-linear parabolic problems is discussed. The approach is based on a combination of finite element and finite difference ... Adaptive space-time finite element method, continuous in space but discontinuous in time for semi-linear parabolic problems is discussed. The approach is based on a combination of finite element and finite difference techniques. The existence and uniqueness of the weak solution are proved without any assumptions on choice of the spacetime meshes. Basic error estimates in L-infinity (L-2) norm, that is maximum-norm in time, L-2-norm in space are obtained. The numerical results are given in the last part and the analysis between theoretic and experimental results are obtained. 展开更多
关键词 semi-linear parabolic equations space-time finite element method existence and uniquess error estimate
下载PDF
TWO-GRID ALGORITHM OF H^(1)-GALERKIN MIXED FINITE ELEMENT METHODS FOR SEMILINEAR PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS
6
作者 Tianliang Hou Chunmei Liu +2 位作者 Chunlei Dai Luoping Chen Yin Yang 《Journal of Computational Mathematics》 SCIE CSCD 2022年第5期667-685,共19页
In this paper,we present a two-grid discretization scheme for semilinear parabolic integro-differential equations by H1-Galerkin mixed finite element methods.We use the lowest order Raviart-Thomas mixed finite element... In this paper,we present a two-grid discretization scheme for semilinear parabolic integro-differential equations by H1-Galerkin mixed finite element methods.We use the lowest order Raviart-Thomas mixed finite elements and continuous linear finite element for spatial discretization,and backward Euler scheme for temporal discretization.Firstly,a priori error estimates and some superclose properties are derived.Secondly,a two-grid scheme is presented and its convergence is discussed.In the proposed two-grid scheme,the solution of the nonlinear system on a fine grid is reduced to the solution of the nonlinear system on a much coarser grid and the solution of two symmetric and positive definite linear algebraic equations on the fine grid and the resulting solution still maintains optimal accuracy.Finally,a numerical experiment is implemented to verify theoretical results of the proposed scheme.The theoretical and numerical results show that the two-grid method achieves the same convergence property as the one-grid method with the choice h=H^(2). 展开更多
关键词 Semilinear parabolic integro-differential equations H^(1)-Galerkin mixed finite element method A priori error estimates Two-grid Superclose.
原文传递
An H^1-Galerkin Nonconforming Mixed Finite Element Method for Integro-Differential Equation of Parabolic Type 被引量:21
7
作者 SHI Dong Yang WANG Hai Hong 《Journal of Mathematical Research and Exposition》 CSCD 2009年第5期871-881,共11页
H1-Galerkin nonconforming mixed finite element methods are analyzed for integro-differential equation of parabolic type.By use of the typical characteristic of the elements,we obtain that the Galerkin mixed approximat... H1-Galerkin nonconforming mixed finite element methods are analyzed for integro-differential equation of parabolic type.By use of the typical characteristic of the elements,we obtain that the Galerkin mixed approximations have the same rates of convergence as in the classical mixed method,but without LBB stability condition. 展开更多
关键词 H^1-Galerkin mixed method integro-differential equation of parabolic type non- conforming semi-discrete scheme full discrete scheme error estimates.
下载PDF
TIME DISCRETIZATION SCHEMES FOR AN INTEGRO-DIFFERENTIAL EQUATION OF PARABOLIC TYPE 被引量:9
8
作者 Huang Yun-qing(Department of Mathematics, Xiangtan University, Xangtan, Hunan, China) 《Journal of Computational Mathematics》 SCIE CSCD 1994年第3期259-264,共6页
In this paper a new approach for time discretization of an integro-differential equation of parabolic type is proposed. The methods are based on the backward-Euler and Crank-Nicolson Schemes but the memory and computa... In this paper a new approach for time discretization of an integro-differential equation of parabolic type is proposed. The methods are based on the backward-Euler and Crank-Nicolson Schemes but the memory and computational requirements are greatly reduced without assuming more regularities on the solution u. 展开更多
关键词 NIC TIME DISCRETIZATION SCHEMES FOR AN integro-differential equatION OF parabolic TYPE
原文传递
EXISTENCE OF ALMOST PERIODIC SOLUTIONS TO SOME SEMI-LINEAR STOCHASTIC INTEGRO-DIFFERENTIAL EQUATIONS 被引量:2
9
作者 Weiguo Liu Jiaowan Luo 《Annals of Differential Equations》 2013年第1期34-43,共10页
In this paper, in the sense of the definition of almost periodicity given by H.Bohr using fixed-point principle, we investigate the existence and uniqueness of quadratic mean almost periodic solutions to semi-linear s... In this paper, in the sense of the definition of almost periodicity given by H.Bohr using fixed-point principle, we investigate the existence and uniqueness of quadratic mean almost periodic solutions to semi-linear stochastic integro-differential evolution equations associated with abstract Volterra equations. Some examples are also given to illustrate our theory. 展开更多
关键词 immediate norm continuity almost periodicity semi-linear stochastic integro-differential equations
原文传递
CONVERGENCE AND MEAN-SQUARE STABILITY OF EXPONENTIAL EULER METHOD FOR SEMI-LINEAR STOCHASTIC DELAY INTEGRO-DIFFERENTIAL EQUATIONS
10
作者 Haiyan Yuan 《Journal of Computational Mathematics》 SCIE CSCD 2022年第2期177-204,共28页
In this paper,the numerical methods for semi-linear stochastic delay integro-difFerential equations are studied.The uniqueness,existence and stability of analytic solutions of semi-linear stochastic delay integro-diff... In this paper,the numerical methods for semi-linear stochastic delay integro-difFerential equations are studied.The uniqueness,existence and stability of analytic solutions of semi-linear stochastic delay integro-differential equations are studied and some suitable conditions for the mean-square stability of the analytic solutions are also obtained.Then the numerical approximation of exponential Euler method for semi-linear stochastic delay integro-differential equations is constructed and the convergence and the stability of the numerical method are studied.It is proved that the exponential Euler method is convergent with strong order 1/2 and can keep the mean-square exponential stability of the analytical solutions under some restrictions on the step size.In addition,numerical experiments are presented to confirm the theoretical results. 展开更多
关键词 semi-linear stochastic delay integro-differential equation Exponential Euler method Mean-square exponential stability Trapezoidal rule
原文传递
Multi-mesh Adaptive Finite Element Algorithms for Constrained Optimal Control Problems Governed By Semi-Linear Parabolic Equations
11
作者 Tie-jun CHEN Jian-xin XIAO Hui-ying WANG 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2014年第2期411-428,共18页
In this paper, we derive a posteriori error estimators for the constrained optimal control problems governed by semi-linear parabolic equations under some assumptions. Then we use them to construct reliable and effici... In this paper, we derive a posteriori error estimators for the constrained optimal control problems governed by semi-linear parabolic equations under some assumptions. Then we use them to construct reliable and efficient multi-mesh adaptive finite element algorithms for the optimal control problems. Some numerical experiments are presented to illustrate the theoretical results. 展开更多
关键词 semi-linear parabolic equations constrained optimal control problems adaptive finite element methods a posteriori error estimators
原文传递
A Priori Error Estimates of Finite Element Methods for Linear Parabolic Integro-Differential Optimal Control Problems
12
作者 Wanfang Shen Liang Ge +1 位作者 Danping Yang Wenbin Liu 《Advances in Applied Mathematics and Mechanics》 SCIE 2014年第5期552-569,共18页
In this paper,we study the mathematical formulation for an optimal control problem governed by a linear parabolic integro-differential equation and present the optimality conditions.We then set up its weak formulation... In this paper,we study the mathematical formulation for an optimal control problem governed by a linear parabolic integro-differential equation and present the optimality conditions.We then set up its weak formulation and the finite element approximation scheme.Based on these we derive the a priori error estimates for its finite element approximation both in H1 and L^(2)norms.Furthermore some numerical tests are presented to verify the theoretical results. 展开更多
关键词 Optimal control linear parabolic integro-differential equations optimality conditions finite element methods a priori error estimate.
原文传递
BLOCK-CENTERED FINITE DIFFERENCE METHODS FOR NON-FICKIAN FLOW IN POROUS MEDIA
13
作者 Xiaoli Li Hongxing Rui 《Journal of Computational Mathematics》 SCIE CSCD 2018年第4期492-516,共25页
In this article, two block-centered finite difference schemes are introduced and analyzed to solve the parabolic integro-differential equation arising in modeling non-Fickian flow in porous media. One scheme is Euler ... In this article, two block-centered finite difference schemes are introduced and analyzed to solve the parabolic integro-differential equation arising in modeling non-Fickian flow in porous media. One scheme is Euler backward scheme with first order accuracy in time increment while the other is Crank-Nicolson scheme with second order accuracy in time increment. Stability analysis and second-order error estimates in spatial meshsize for both pressure and velocity in discrete L^2 norms are established on non-uniform rectangular grid. Numerical experiments using the schemes show that the convergence rates are in agreement with the theoretical analysis. 展开更多
关键词 Block-centered finite difference parabolic integro-differential equation NONUNIFORM Error estimates Numerical analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部