We present in this paper a new formulation of the iterative method FWCIP “Fast Wave Concept Iterative Process” based on the wave concept. It calculates the electromagnetic parameters of a planar structure including ...We present in this paper a new formulation of the iterative method FWCIP “Fast Wave Concept Iterative Process” based on the wave concept. It calculates the electromagnetic parameters of a planar structure including a via-hole. This is modelled by the electromagnetic field that it creates in the structure. The validation of results found by this new formulation is ensured by comparison with those obtained by HFSS “high frequency structural simulator” software from Ansoft. They show that they are in good agreement.展开更多
Vertical three-dimensional(3D)integration is a highly attractive strategy to integrate a large number of transistor devices per unit area.This approach has emerged to accommodate the higher demand of data processing c...Vertical three-dimensional(3D)integration is a highly attractive strategy to integrate a large number of transistor devices per unit area.This approach has emerged to accommodate the higher demand of data processing capability and to circumvent the scaling limitation.A huge number of research efforts have been attempted to demonstrate vertically stacked electronics in the last two decades.In this review,we revisit materials and devices for the vertically integrated electronics with an emphasis on the emerging semiconductor materials that can be processable by bottom-up fabrication methods,which are suitable for future flexible and wearable electronics.The vertically stacked integrated circuits are reviewed based on the semiconductor materials:organic semiconductors,carbon nanotubes,metal oxide semiconductors,and atomically thin two-dimensional materials including transi-tion metal dichalcogenides.The features,device performance,and fabrication methods for 3D integration of the transistor based on each semiconductor are discussed.Moreover,we highlight recent advances that can be important milestones in the vertically integrated elec-tronics including advanced integrated circuits,sensors,and display systems.There are remaining challenges to overcome;however,we believe that the vertical 3D integration based on emerging semiconductor materials and devices can be a promising strategy for future electronics.展开更多
A high etch rate GaAs via-hole process was studied in an inductively coupled plasma system using Cl2/BCl3 gas system. The effects of process parameters on the GaAs etch rate were investigated. The influences of photor...A high etch rate GaAs via-hole process was studied in an inductively coupled plasma system using Cl2/BCl3 gas system. The effects of process parameters on the GaAs etch rate were investigated. The influences of photoresist SiO2; Ni masks on the resultant profiles were also studied by scanning electron microscopy. A maximum etch rate of 8.9 μm/min was obtained; the etched profiles were optimized.展开更多
文摘We present in this paper a new formulation of the iterative method FWCIP “Fast Wave Concept Iterative Process” based on the wave concept. It calculates the electromagnetic parameters of a planar structure including a via-hole. This is modelled by the electromagnetic field that it creates in the structure. The validation of results found by this new formulation is ensured by comparison with those obtained by HFSS “high frequency structural simulator” software from Ansoft. They show that they are in good agreement.
基金This work was supported by the National Research Foundation of Korea(NRF)grants by the Korean Government(MSIT)(NRF-2021R1A6A3A14038580,NRF-2020R1A2C1101647)This work was supported by the Technology Innovation Program(00144300,Interface Technology of 3D Stacked Heterogeneous System for SCM-based Process-in-Memory)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea).
文摘Vertical three-dimensional(3D)integration is a highly attractive strategy to integrate a large number of transistor devices per unit area.This approach has emerged to accommodate the higher demand of data processing capability and to circumvent the scaling limitation.A huge number of research efforts have been attempted to demonstrate vertically stacked electronics in the last two decades.In this review,we revisit materials and devices for the vertically integrated electronics with an emphasis on the emerging semiconductor materials that can be processable by bottom-up fabrication methods,which are suitable for future flexible and wearable electronics.The vertically stacked integrated circuits are reviewed based on the semiconductor materials:organic semiconductors,carbon nanotubes,metal oxide semiconductors,and atomically thin two-dimensional materials including transi-tion metal dichalcogenides.The features,device performance,and fabrication methods for 3D integration of the transistor based on each semiconductor are discussed.Moreover,we highlight recent advances that can be important milestones in the vertically integrated elec-tronics including advanced integrated circuits,sensors,and display systems.There are remaining challenges to overcome;however,we believe that the vertical 3D integration based on emerging semiconductor materials and devices can be a promising strategy for future electronics.
基金Supported by the National Natural Science Foundation of China (Grant No. 60506012)Beijing Education Committee Project (Grant No. KZ200510005003)+2 种基金Beijing Municipal Talented Person Education Plan Item (Grant No. 05002015200504)Beijing Municipal Scientific New-star Plan (Grant No. 2005A11)the Hi-Tech Research and Development Program of China (Grant No. 2006AA03A121)
文摘A high etch rate GaAs via-hole process was studied in an inductively coupled plasma system using Cl2/BCl3 gas system. The effects of process parameters on the GaAs etch rate were investigated. The influences of photoresist SiO2; Ni masks on the resultant profiles were also studied by scanning electron microscopy. A maximum etch rate of 8.9 μm/min was obtained; the etched profiles were optimized.