期刊文献+
共找到453篇文章
< 1 2 23 >
每页显示 20 50 100
Naive Bayesian Classifier在遥感影像分类中的应用研究 被引量:4
1
作者 陶建斌 舒宁 沈照庆 《遥感信息》 CSCD 2009年第2期52-56,共5页
将Naive Bayesian Classifier(简单贝叶斯网络分类器)用于遥感影像的分类,并对其主要问题如特征选择和后验概率推理等展开研究。使用K2结构学习算法选出具有类别可分性的波段,进一步利用互信息测试对遥感波段之间的相关性做分析,去除冗... 将Naive Bayesian Classifier(简单贝叶斯网络分类器)用于遥感影像的分类,并对其主要问题如特征选择和后验概率推理等展开研究。使用K2结构学习算法选出具有类别可分性的波段,进一步利用互信息测试对遥感波段之间的相关性做分析,去除冗余信息。特征(波段)的条件独立性假设简化了联合概率的计算,以较小的计算代价获得后验概率。在此基础上,将Naive Bayesian Classifier用于多光谱和高光谱影像的分类,获得很好的性能和相当高的稳健性。 展开更多
关键词 贝叶斯网络 简单贝叶斯网络分类器 互信息 条件独立性假设 遥感影像 分类
下载PDF
Double-layer Bayesian Classifier Ensembles Based on Frequent Itemsets 被引量:3
2
作者 Wei-Guo Yi Jing Duan Ming-Yu Lu 《International Journal of Automation and computing》 EI 2012年第2期215-220,共6页
Numerous models have been proposed to reduce the classification error of Naive Bayes by weakening its attribute independence assumption and some have demonstrated remarkable error performance. Considering that ensembl... Numerous models have been proposed to reduce the classification error of Naive Bayes by weakening its attribute independence assumption and some have demonstrated remarkable error performance. Considering that ensemble learning is an effective method of reducing the classifmation error of the classifier, this paper proposes a double-layer Bayesian classifier ensembles (DLBCE) algorithm based on frequent itemsets. DLBCE constructs a double-layer Bayesian classifier (DLBC) for each frequent itemset the new instance contained and finally ensembles all the classifiers by assigning different weight to different classifier according to the conditional mutual information. The experimental results show that the proposed algorithm outperforms other outstanding algorithms. 展开更多
关键词 Double-layer bayesian classifier frequent itemsets conditional mutual information support.
下载PDF
Adaptive target and jamming recognition for the pulse doppler radar fuze based on a time-frequency joint feature and an online-updated naive bayesian classifier with minimal risk 被引量:6
3
作者 Jian Dai Xin-hong Hao +2 位作者 Ze Li Ping Li Xiao-peng Yan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第3期457-466,共10页
This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed... This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed.Then,the frequency entropy and peak-to-peak ratio are extracted from the matched filter output of the PDRF,and the time-frequency joint feature is constructed.Based on the time-frequency joint feature,the naive Bayesian classifier(NBC)with minimal risk is established for target and jamming recognition.To improve the adaptability of the proposed method in complex environments,an online update process that adaptively modifies the classifier in the duration of the work of the PDRF is proposed.The experiments show that the PDRF can maintain high recognition accuracy when the signal-to-noise ratio(SNR)decreases and the jamming-to-signal ratio(JSR)increases.Moreover,the applicable analysis shows that he ONBCMR method has low computational complexity and can fully meet the real-time requirements of PDRF. 展开更多
关键词 Pulse Doppler radar fuze(PDRF) Target and jamming recognition Time-frequency joint feature Online-update naive bayesian classifier minimal risk(ONBCMR)
下载PDF
Multi-source Fuzzy Information Fusion Method Based on Bayesian Optimal Classifier 被引量:8
4
作者 SU Hong-Sheng 《自动化学报》 EI CSCD 北大核心 2008年第3期282-287,共6页
为了做常规贝叶斯的最佳的分类器,拥有处理模糊信息并且认识到推理过程的自动化的能力,一个新贝叶斯的最佳的分类器被建议,模糊信息嵌入。它不能仅仅有效地处理模糊信息,而且保留贝叶斯的最佳的分类器的学习性质。另外根据模糊集合... 为了做常规贝叶斯的最佳的分类器,拥有处理模糊信息并且认识到推理过程的自动化的能力,一个新贝叶斯的最佳的分类器被建议,模糊信息嵌入。它不能仅仅有效地处理模糊信息,而且保留贝叶斯的最佳的分类器的学习性质。另外根据模糊集合理论的进化,含糊的集合也是嵌入的进它产生含糊的贝叶斯的最佳的分类器。它能同时从积极、反向的方向模仿模糊信息的双重的特征。进一步,贝叶斯的最佳的分类器也是的集合对从积极、反向、不确定的方面就模糊信息的三方面的特征而言求婚了。最后,一个知识库的人工的神经网络(KBANN ) 被介绍认识到贝叶斯的最佳的分类器的自动推理。它不仅减少贝叶斯的最佳的分类器的计算费用而且改进它学习质量的分类。 展开更多
关键词 模糊信息 混合方法 贝叶斯最佳分类器 自动推理 神经网络
下载PDF
WORD SENSE DISAMBIGUATION BASED ON IMPROVED BAYESIAN CLASSIFIERS 被引量:1
5
作者 Liu Ting Lu Zhimao Li Sheng 《Journal of Electronics(China)》 2006年第3期394-398,共5页
Word Sense Disambiguation (WSD) is to decide the sense of an ambiguous word on particular context. Most of current studies on WSD only use several ambiguous words as test samples, thus leads to some limitation in prac... Word Sense Disambiguation (WSD) is to decide the sense of an ambiguous word on particular context. Most of current studies on WSD only use several ambiguous words as test samples, thus leads to some limitation in practical application. In this paper, we perform WSD study based on large scale real-world corpus using two unsupervised learning algorithms based on ±n-improved Bayesian model and Dependency Grammar (DG)-improved Bayesian model. ±n-improved classifiers reduce the window size of context of ambiguous words with close-distance feature extraction method, and decrease the jamming of useless features, thus obviously improve the accuracy, reaching 83.18% (in open test). DG-improved classifier can more effectively conquer the noise effect existing in Naive-Bayesian classifier. Experimental results show that this approach does better on Chinese WSD, and the open test achieved an accuracy of 86.27%. 展开更多
关键词 Word Sense Disambiguation (WSD) Natural Language Processing (NLP) Unsupervised learning algorithm Dependency Grammar (DG) bayesian classifier
下载PDF
Deep Feature Bayesian Classifier for SAR Target Recognition with Small Training Set
6
作者 Liguo Zhang Zilin Tian +3 位作者 Yan Zhang Tong Shuai Shuo Liang Zhuofei Wu 《Journal of New Media》 2022年第2期59-71,共13页
In recent years,deep learning algorithms have been popular in recognizing targets in synthetic aperture radar(SAR)images.However,due to the problem of overfitting,the performance of these models tends to worsen when j... In recent years,deep learning algorithms have been popular in recognizing targets in synthetic aperture radar(SAR)images.However,due to the problem of overfitting,the performance of these models tends to worsen when just a small number of training data are available.In order to solve the problems of overfitting and an unsatisfied performance of the network model in the small sample remote sensing image target recognition,in this paper,we uses a deep residual network to autonomously acquire image features and proposes the Deep Feature Bayesian Classifier model(RBnet)for SAR image target recognition.In the RBnet,a Bayesian classifier is used to improve the effect of SAR image target recognition and improve the accuracy when the training data is limited.The experimental results on MSTAR dataset show that the RBnet can fully exploit effective information in limited samples and recognize the target of the SAR images more accurately.Compared with other state-of-the-art methods,our method offers significant recognition accuracy improvements under limited training data.Noted that theRBnet is moderately difficult to implement and has the value of popularization and application in engineering application scenarios in the field of small-sample remote sensing target recognition and recognition. 展开更多
关键词 bayesian classifier limited data synthetic aperture radar(SAR) target recognition
下载PDF
Analysis on Backpropagation Neural Network and NaYve Bayesian Classifier in Data Mining
7
作者 Sarmad Makki Aida Mustapha Junaidah Mohamed Kassim Ealaf Gharaybeh Mohamed Alhazmi 《通讯和计算机(中英文版)》 2012年第1期73-78,共6页
关键词 BP神经网络 分类分析 数据挖掘 贝叶斯 分类算法 数据分析 分类方法 数据类
下载PDF
Decision Bayes Criteria for Optimal Classifier Based on Probabilistic Measures 被引量:1
8
作者 Wissal Drira Faouzi Ghorbel 《Journal of Electronic Science and Technology》 CAS 2014年第2期216-219,共4页
This paper addresses the high dimension sample problem in discriminate analysis under nonparametric and supervised assumptions. Since there is a kind of equivalence between the probabilistic dependence measure and the... This paper addresses the high dimension sample problem in discriminate analysis under nonparametric and supervised assumptions. Since there is a kind of equivalence between the probabilistic dependence measure and the Bayes classification error probability, we propose to use an iterative algorithm to optimize the dimension reduction for classification with a probabilistic approach to achieve the Bayes classifier. The estimated probabilities of different errors encountered along the different phases of the system are realized by the Kernel estimate which is adjusted in a means of the smoothing parameter. Experiment results suggest that the proposed approach performs well. 展开更多
关键词 bayesian classifier dimension reduction kernel method optimization probabilistic dependence measure smoothing parameter
下载PDF
Integrating RFID Technology with Intelligent Classifiers for Meaningful Prediction Knowledge 被引量:1
9
作者 Peter Darcy Steven Tucker Bela Stantic 《Advances in Internet of Things》 2013年第2期27-33,共7页
Radio Frequency Identification (RFID) is wireless technology that has been designed to automatically identify tagged objects using a reader. Several applications of this technology have been introduced in past literat... Radio Frequency Identification (RFID) is wireless technology that has been designed to automatically identify tagged objects using a reader. Several applications of this technology have been introduced in past literature such as pet identification and luggage tracking which have increased the efficiency and effectiveness of each environment into which it was integrated. However, due to the ambiguous nature of the captured information with the existence of missing, wrong and duplicate readings, the wide-scale adoption of the architecture is limited to commercial sectors where the integrity of the observations can tolerate ambiguity. In this work, we propose an application of RFID to take the reporting of class attendance and to integrate a predictive classifier to extract high level meaningful information that can be used in diverse areas such as scheduling and low student retention. We conclude by providing an analysis of the core strengths and opportunities that exist for this concept and how we might extend it in future research. 展开更多
关键词 RADIO Frequency Identification classifier PREDICTION NEURAL NETWORK bayesian NETWORK
下载PDF
同态明文-密文矩阵运算及其应用
10
作者 刘洋 杨林翰 +2 位作者 陈经纬 吴文渊 冯勇 《通信学报》 EI CSCD 北大核心 2024年第2期150-161,共12页
支持单指令多数据操作的同态加密方案能有效提高密文计算的均摊效率,但密文结构导致矩阵运算复杂度高。在许多应用中,采用明文-密文矩阵操作可以在确保安全的同时实现隐私计算。基于此,提出一个适用于任意维数的明文-密文矩阵乘法方案... 支持单指令多数据操作的同态加密方案能有效提高密文计算的均摊效率,但密文结构导致矩阵运算复杂度高。在许多应用中,采用明文-密文矩阵操作可以在确保安全的同时实现隐私计算。基于此,提出一个适用于任意维数的明文-密文矩阵乘法方案。该方案通过明文矩阵编码和密文矩阵维数变换等步骤计算得到密文结果。与已知最好的Jiang等所提的密文方阵乘法算法相比,所提方案支持任意维数的矩阵乘法,并支持矩阵连乘;理论分析和实验结果均表明,所提方案具有更低的密文旋转复杂度和更高的计算效率。将所提方案应用在隐私保护的贝叶斯分类器中,能以更高安全参数和更少计算时间完成分类任务。 展开更多
关键词 同态加密 矩阵运算 机器学习 贝叶斯分类器
下载PDF
基于合约熵判决算法的区块链网络DDoS防御优化
11
作者 刘云 陈路遥 +1 位作者 宋凯 朱鹏俊 《南京理工大学学报》 CAS CSCD 北大核心 2024年第2期175-181,共7页
为针对多域协同联合防御分布式拒绝服务(DDoS)更有效发挥区块链网络优势,该文提出智能合约熵检测(SCED)算法。基于Hyperledger Fabric区块链架构,首先,通过智能合约技术构建多域协作机制,建立智能合约协作子算法;然后,针对受害域内非法... 为针对多域协同联合防御分布式拒绝服务(DDoS)更有效发挥区块链网络优势,该文提出智能合约熵检测(SCED)算法。基于Hyperledger Fabric区块链架构,首先,通过智能合约技术构建多域协作机制,建立智能合约协作子算法;然后,针对受害域内非法流量IP生成IP黑名单,并通知所有协作域,协同防御DDoS;其次,在各单域内部署由监测、比对、分类及防御模块组成的熵判决防御子算法,检测处理域内非法流量;最后,结合多域智能合约协作和单域熵判决防御,实现区块链网络中受害域、中间域及攻击域协同防御DDoS。仿真结果表明,对比ChainSecure等算法,SCED算法在精度和效率方面有较好的表现。 展开更多
关键词 分布式拒绝服务 区块链 智能合约 信息熵 贝叶斯分类器
下载PDF
基于Boosting机制的Naive Bayesian文本分类器 被引量:3
12
作者 崔林 付克明 +1 位作者 石生树 宋瀚涛 《计算机工程与应用》 CSCD 北大核心 2005年第8期31-33,67,共4页
Naive Bayesian分类器是一种有效的文本分类方法,但由于具有较强的稳定性,很难通过Boosting机制提高其性能。因此用Naive Bayesian分类器作为Boosting的基分类器需要解决的最大问题,就是如何破坏Naive Bayesian分类器的稳定性。提出了3... Naive Bayesian分类器是一种有效的文本分类方法,但由于具有较强的稳定性,很难通过Boosting机制提高其性能。因此用Naive Bayesian分类器作为Boosting的基分类器需要解决的最大问题,就是如何破坏Naive Bayesian分类器的稳定性。提出了3种破坏Naive Bayesian学习器稳定性的方法。第一种方法改变训练集样本,第二种方法采用随机属性选择社团,第三种方法是在Boosting的每次迭代中利用不同的文本特征提取方法建立不同的特征词集。实验表明,这几种方法各有其优缺点,但都比原有方法准确、高效。 展开更多
关键词 BOOSTING NAIVE bayesian classifier 文本分类 文本挖掘 数据挖掘
下载PDF
基于贝叶斯分类器的船舶型材优化设计
13
作者 柳俊杰 汪俊 +1 位作者 梁晓锋 王健 《舰船科学技术》 北大核心 2024年第10期75-82,共8页
船舶结构轻量化设计对于提高船舶的运载能力和实现更大的经济效益具有重要意义,针对传统优化设计方法建立优化模型时约束条件无显式表达的问题,提出基于贝叶斯分类器的船舶型材优化设计方法。首先,依据贝叶斯理论和核密度估计方法构建... 船舶结构轻量化设计对于提高船舶的运载能力和实现更大的经济效益具有重要意义,针对传统优化设计方法建立优化模型时约束条件无显式表达的问题,提出基于贝叶斯分类器的船舶型材优化设计方法。首先,依据贝叶斯理论和核密度估计方法构建贝叶斯分类器,然后利用贝叶斯分类器代替隐式约束函数进行求解,最后以T型材的优化设计问题为例进行验证,并将优化结果对比约束条件可显式表达情况下的求解结果进行分析。基于单约束条件的贝叶斯分类器目标函数偏差低于2%,基于多约束条件的贝叶斯分类器求解目标函数偏差在8%左右,且不同的贝叶斯分类器设计方法会对优化求解结果精确程度产生影响。使用贝叶斯分类器做出决策边界能代替实际边界进行优化求解,验证了贝叶斯分类器驱动求解器寻优的可行性,对解决约束条件无显式表达的问题提供了新思路。 展开更多
关键词 船舶结构 优化设计 贝叶斯分类器
下载PDF
一种无监督双层DBN的轴承故障智能诊断方法
14
作者 刘洋 李永亭 +1 位作者 齐咏生 刘利强 《计算机仿真》 2024年第6期554-564,共11页
大型滚动轴承设备的运行环境复杂多变,以往利用模式识别建立的诊断方法,通常难以有效解决数据含有噪声,不完备、无标签等问题。因此提出一种无监督双层深度信念网络(DBN)的滚动轴承故障智能分类与诊断方法。方法利用DBN的逐层贪婪学习... 大型滚动轴承设备的运行环境复杂多变,以往利用模式识别建立的诊断方法,通常难以有效解决数据含有噪声,不完备、无标签等问题。因此提出一种无监督双层深度信念网络(DBN)的滚动轴承故障智能分类与诊断方法。方法利用DBN的逐层贪婪学习来挖掘与故障相关的特征信息并输入分类器。通过自适应模糊C均值聚类算法,识别未知数据中的异常值。若异常值密度聚集度低,则判定其为噪声,并以此消除分类过程噪声干扰;若异常值密度聚集度高,则判定其为一个新类别,并合并到故障知识库中。之后再将贝叶斯分类器的方法应用于二级DBN网络中,使故障损伤等级实现无监督学习。利用西储大学滚动轴承实验平台数据对此套方法进行验证,结论表明在有噪声和不完备数据建模情况下,可以很好地完成故障类型与损伤等级的准确划分,具有一定的智能性。 展开更多
关键词 深度置信网络 滚动轴承 不完备数据 贝叶斯分类器
下载PDF
基于贝叶斯衍生分类器的社交网络用户影响力评价模型 被引量:1
15
作者 周春良 刘仰光 孟祥佩 《计算机工程》 CAS CSCD 北大核心 2024年第6期394-400,共7页
为了防止社交网络中的负面信息快速传播,则需要通过评价社交网络中用户的影响力来找出影响力大的社交网络节点。针对传统算法在社交网络领域中交叉特性缺失的问题,结合高斯贝叶斯衍生分类器,提出一种网络用户影响力评价模型。该模型结... 为了防止社交网络中的负面信息快速传播,则需要通过评价社交网络中用户的影响力来找出影响力大的社交网络节点。针对传统算法在社交网络领域中交叉特性缺失的问题,结合高斯贝叶斯衍生分类器,提出一种网络用户影响力评价模型。该模型结合用户活跃度、用户联系度、用户覆盖度等维度,建立社交网络用户影响力刻画指标,同时考虑社交网络用户之间的关系特征和用户自身的行为特征,降低僵尸粉和垃圾社交网络对网络评价结果的影响,通过建立连续属性朴素贝叶斯分类器方法,提出基于高斯贝叶斯衍生分类器的模型求解方法。使用新浪微博中152059423条媒体报纸用户评论作为实验数据,分析影响该评价模型的关键因素,利用仿真软件完成和HRank等传统模型对比实验,结果表明,该模型体现了社交网络用户的交叉特性,提升了模型的实用性,相比于其他传统算法,该模型分类误差更趋于稳定,分类结果的误差率更低,适应性更好。 展开更多
关键词 社交网络 影响力 贝叶斯衍生分类器 评价模型 用户活跃度
下载PDF
基于特征多视图提升Naive Bayesian的Boosting改进算法 被引量:1
16
作者 林正奎 唐焕玲 +1 位作者 鲁明羽 王敬东 《北京交通大学学报》 CAS CSCD 北大核心 2009年第6期70-75,共6页
AdaBoost作为一种有效的集成学习方法,能够明显提高不稳定学习算法的分类正确率,但对稳定的Naive Bayesian分类算法的提升效果却不明显.为此,利用多种特征评估函数建立不同的特征视图,生成多个有差异的加权朴素贝叶斯(WNB)基分类器;尝... AdaBoost作为一种有效的集成学习方法,能够明显提高不稳定学习算法的分类正确率,但对稳定的Naive Bayesian分类算法的提升效果却不明显.为此,利用多种特征评估函数建立不同的特征视图,生成多个有差异的加权朴素贝叶斯(WNB)基分类器;尝试使用几种不同的方式将样本权重嵌入WNB基分类器的参数中,对WNB产生扰动,进一步增加基分类器的不稳定性.实验结果表明,对比AdaBoost所提算法,Boost MV-WNB能够明显提升WNB文本分类器的性能. 展开更多
关键词 ADABOOST 加权朴素贝叶斯 文本分类 特征多视图 样本权重
下载PDF
基于Bayesian多分支岩石可钻性值估计 被引量:2
17
作者 沙林秀 邵小华 +1 位作者 张奇志 李琳 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第3期73-79,共7页
针对智能优化控制过程中岩石可钻性参数估计存在非实时性和模型泛化能力差的问题,采用两层结构建立基于Bayesian多分支岩石可钻性估计模型。通过Bayesian分类器实现岩性分类以提高可钻性模型样本数据的相关性,细化可钻性估计模型;采用... 针对智能优化控制过程中岩石可钻性参数估计存在非实时性和模型泛化能力差的问题,采用两层结构建立基于Bayesian多分支岩石可钻性估计模型。通过Bayesian分类器实现岩性分类以提高可钻性模型样本数据的相关性,细化可钻性估计模型;采用改进双链量子遗传算法优化的BPNN结构,根据不同的岩石类型建立相应的岩石可钻性IDCQGA_BPNN估计模型。结果表明,该方法通过算法优化网络模型增强了模型的泛化能力,加快了参数的估计速度和估计精度,能够满足智能优化控制过程中岩石可钻性参数估计的实时性需求。 展开更多
关键词 岩石可钻性 bayesian分类器 L-M算法 改进的双链量子遗传算法
下载PDF
一种基于Bayesian的图像分类算法 被引量:1
18
作者 张小红 张倩 《计算机应用与软件》 CSCD 2009年第9期250-252,共3页
提出了一种基于Bayesian的图像分类算法,该算法首先从原始数字图像出发,通过分析图像的特征分布特点,对图像的局部区域扫描分析,然后抽取目标图像的特征元素,得到其颜色、纹理、形状等特征,最后利用Bayesian分类器来实现图像的快速自动... 提出了一种基于Bayesian的图像分类算法,该算法首先从原始数字图像出发,通过分析图像的特征分布特点,对图像的局部区域扫描分析,然后抽取目标图像的特征元素,得到其颜色、纹理、形状等特征,最后利用Bayesian分类器来实现图像的快速自动分类。实验结果表明,该算法能够有效提取图像的局部特征,从而快速、准确地实现图像分类。 展开更多
关键词 贝叶斯分类器 图像分类 局部特征
下载PDF
基于贝叶斯网络的等级保护测评辅助方法 被引量:1
19
作者 李志文 梁承东 《电子质量》 2024年第2期12-15,共4页
当前在等级保护测评活动中,测评指标众多,为减少人工审核所耗费的时间和资源,引入了贝叶斯网络作为一种辅助方法。首先,该方法以现有机构的大量测评数据为基础构建贝叶斯网络模型,模型以测评指标为父节点,测评指标中的各检查点为子节点... 当前在等级保护测评活动中,测评指标众多,为减少人工审核所耗费的时间和资源,引入了贝叶斯网络作为一种辅助方法。首先,该方法以现有机构的大量测评数据为基础构建贝叶斯网络模型,模型以测评指标为父节点,测评指标中的各检查点为子节点,通过工具Netica计算得出各测评指标和检查点的概率;然后,通过专家验证调整部分预设关系得出各测评指标和检查点基准概率;最后,以此准概率与测评中新得到的数据进行对比,可为等级保护测评活动提供辅助检验、预测的功能。 展开更多
关键词 贝叶斯网络 贝叶斯定理 等级保护 等级保护测评 网络安全
下载PDF
Robust model for tunnel squeezing using Bayesian optimized classifiers with partially missing database 被引量:2
20
作者 Yin Bo Xing Huang +5 位作者 Yucong Pan Yanfang Feng Penghai Deng Feng Gao Ping Liu Quansheng Liu 《Underground Space》 SCIE EI CSCD 2023年第3期91-117,共27页
Accurately predicting and estimating the squeezing and ground response to tunneling remains challenging.Moreover,tunnel-squeezing hazards are much more likely to occur in deeply buried long tunnels with complex engine... Accurately predicting and estimating the squeezing and ground response to tunneling remains challenging.Moreover,tunnel-squeezing hazards are much more likely to occur in deeply buried long tunnels with complex engineering-geological environments.There-fore,a high-performance predictive model for tunnel squeezing is necessary.A superior ensemble classifier is put forward in this study,which is composed of four individual classifiers(gradient boosting classifier,extra-trees classifier,AdaBoost classifier,and Logistic regression classifier)and two optimization algorithms(Bayesian optimization(BO)and sparrow search algorithm(SSA)).The training database covers five parameters:tunnel depth(H),rock tunneling quality index(Q),tunnel diameter(D),support stiffness(K),and strength stress ratio(SSR),about which the basic information is accessible at the early design phases.However,the dataset compiled from the literature is insufficient.Thus,the ten proposed methods are used to replace the missing values.During the model training pro-cess,BO shows its strong ability to optimize seventeen hyperparameters.When applied to tune the classifiers’weights,SSA achieves a fast and efficient performance.The novel Shapley Additive Explanations–LightGBM method indicates that the K is the most important input feature,followed by SSR,Q,H,and D,respectively.The ensemble classifier is then validated using the test set and additional his-torical case projects.The validation shows that the model can achieve an accuracy of 98%(i.e.,the error rate is 2%)on the test set,higher than those achieved by previous prediction models.Moreover,the predicted probability could provide warning information for timely support measures.Finally,the application results are illustrated through tests on the tunnel sections that have not yet been excavated in the line of the Sichuan–Tibet railway project.The applied predictive tendencies and laws are in line with the practical experience.In sum-mary,the proposed model’s prediction results are reasonable,and its prediction will be more accurate as more data is collected and trained for prewarning the tunnel squeezing hazard. 展开更多
关键词 Tunnel squeezing hazard bayesian optimization Machine learning techniques Sparrow search algorithm Ensemble classifier Incomplete database
原文传递
上一页 1 2 23 下一页 到第
使用帮助 返回顶部