Numerous models have been proposed to reduce the classification error of Naive Bayes by weakening its attribute independence assumption and some have demonstrated remarkable error performance. Considering that ensembl...Numerous models have been proposed to reduce the classification error of Naive Bayes by weakening its attribute independence assumption and some have demonstrated remarkable error performance. Considering that ensemble learning is an effective method of reducing the classifmation error of the classifier, this paper proposes a double-layer Bayesian classifier ensembles (DLBCE) algorithm based on frequent itemsets. DLBCE constructs a double-layer Bayesian classifier (DLBC) for each frequent itemset the new instance contained and finally ensembles all the classifiers by assigning different weight to different classifier according to the conditional mutual information. The experimental results show that the proposed algorithm outperforms other outstanding algorithms.展开更多
This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed...This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed.Then,the frequency entropy and peak-to-peak ratio are extracted from the matched filter output of the PDRF,and the time-frequency joint feature is constructed.Based on the time-frequency joint feature,the naive Bayesian classifier(NBC)with minimal risk is established for target and jamming recognition.To improve the adaptability of the proposed method in complex environments,an online update process that adaptively modifies the classifier in the duration of the work of the PDRF is proposed.The experiments show that the PDRF can maintain high recognition accuracy when the signal-to-noise ratio(SNR)decreases and the jamming-to-signal ratio(JSR)increases.Moreover,the applicable analysis shows that he ONBCMR method has low computational complexity and can fully meet the real-time requirements of PDRF.展开更多
Word Sense Disambiguation (WSD) is to decide the sense of an ambiguous word on particular context. Most of current studies on WSD only use several ambiguous words as test samples, thus leads to some limitation in prac...Word Sense Disambiguation (WSD) is to decide the sense of an ambiguous word on particular context. Most of current studies on WSD only use several ambiguous words as test samples, thus leads to some limitation in practical application. In this paper, we perform WSD study based on large scale real-world corpus using two unsupervised learning algorithms based on ±n-improved Bayesian model and Dependency Grammar (DG)-improved Bayesian model. ±n-improved classifiers reduce the window size of context of ambiguous words with close-distance feature extraction method, and decrease the jamming of useless features, thus obviously improve the accuracy, reaching 83.18% (in open test). DG-improved classifier can more effectively conquer the noise effect existing in Naive-Bayesian classifier. Experimental results show that this approach does better on Chinese WSD, and the open test achieved an accuracy of 86.27%.展开更多
In recent years,deep learning algorithms have been popular in recognizing targets in synthetic aperture radar(SAR)images.However,due to the problem of overfitting,the performance of these models tends to worsen when j...In recent years,deep learning algorithms have been popular in recognizing targets in synthetic aperture radar(SAR)images.However,due to the problem of overfitting,the performance of these models tends to worsen when just a small number of training data are available.In order to solve the problems of overfitting and an unsatisfied performance of the network model in the small sample remote sensing image target recognition,in this paper,we uses a deep residual network to autonomously acquire image features and proposes the Deep Feature Bayesian Classifier model(RBnet)for SAR image target recognition.In the RBnet,a Bayesian classifier is used to improve the effect of SAR image target recognition and improve the accuracy when the training data is limited.The experimental results on MSTAR dataset show that the RBnet can fully exploit effective information in limited samples and recognize the target of the SAR images more accurately.Compared with other state-of-the-art methods,our method offers significant recognition accuracy improvements under limited training data.Noted that theRBnet is moderately difficult to implement and has the value of popularization and application in engineering application scenarios in the field of small-sample remote sensing target recognition and recognition.展开更多
This paper addresses the high dimension sample problem in discriminate analysis under nonparametric and supervised assumptions. Since there is a kind of equivalence between the probabilistic dependence measure and the...This paper addresses the high dimension sample problem in discriminate analysis under nonparametric and supervised assumptions. Since there is a kind of equivalence between the probabilistic dependence measure and the Bayes classification error probability, we propose to use an iterative algorithm to optimize the dimension reduction for classification with a probabilistic approach to achieve the Bayes classifier. The estimated probabilities of different errors encountered along the different phases of the system are realized by the Kernel estimate which is adjusted in a means of the smoothing parameter. Experiment results suggest that the proposed approach performs well.展开更多
Radio Frequency Identification (RFID) is wireless technology that has been designed to automatically identify tagged objects using a reader. Several applications of this technology have been introduced in past literat...Radio Frequency Identification (RFID) is wireless technology that has been designed to automatically identify tagged objects using a reader. Several applications of this technology have been introduced in past literature such as pet identification and luggage tracking which have increased the efficiency and effectiveness of each environment into which it was integrated. However, due to the ambiguous nature of the captured information with the existence of missing, wrong and duplicate readings, the wide-scale adoption of the architecture is limited to commercial sectors where the integrity of the observations can tolerate ambiguity. In this work, we propose an application of RFID to take the reporting of class attendance and to integrate a predictive classifier to extract high level meaningful information that can be used in diverse areas such as scheduling and low student retention. We conclude by providing an analysis of the core strengths and opportunities that exist for this concept and how we might extend it in future research.展开更多
Accurately predicting and estimating the squeezing and ground response to tunneling remains challenging.Moreover,tunnel-squeezing hazards are much more likely to occur in deeply buried long tunnels with complex engine...Accurately predicting and estimating the squeezing and ground response to tunneling remains challenging.Moreover,tunnel-squeezing hazards are much more likely to occur in deeply buried long tunnels with complex engineering-geological environments.There-fore,a high-performance predictive model for tunnel squeezing is necessary.A superior ensemble classifier is put forward in this study,which is composed of four individual classifiers(gradient boosting classifier,extra-trees classifier,AdaBoost classifier,and Logistic regression classifier)and two optimization algorithms(Bayesian optimization(BO)and sparrow search algorithm(SSA)).The training database covers five parameters:tunnel depth(H),rock tunneling quality index(Q),tunnel diameter(D),support stiffness(K),and strength stress ratio(SSR),about which the basic information is accessible at the early design phases.However,the dataset compiled from the literature is insufficient.Thus,the ten proposed methods are used to replace the missing values.During the model training pro-cess,BO shows its strong ability to optimize seventeen hyperparameters.When applied to tune the classifiers’weights,SSA achieves a fast and efficient performance.The novel Shapley Additive Explanations–LightGBM method indicates that the K is the most important input feature,followed by SSR,Q,H,and D,respectively.The ensemble classifier is then validated using the test set and additional his-torical case projects.The validation shows that the model can achieve an accuracy of 98%(i.e.,the error rate is 2%)on the test set,higher than those achieved by previous prediction models.Moreover,the predicted probability could provide warning information for timely support measures.Finally,the application results are illustrated through tests on the tunnel sections that have not yet been excavated in the line of the Sichuan–Tibet railway project.The applied predictive tendencies and laws are in line with the practical experience.In sum-mary,the proposed model’s prediction results are reasonable,and its prediction will be more accurate as more data is collected and trained for prewarning the tunnel squeezing hazard.展开更多
基金supported by National Natural Science Foundation of China (Nos. 61073133, 60973067, and 61175053)Fundamental Research Funds for the Central Universities of China(No. 2011ZD010)
文摘Numerous models have been proposed to reduce the classification error of Naive Bayes by weakening its attribute independence assumption and some have demonstrated remarkable error performance. Considering that ensemble learning is an effective method of reducing the classifmation error of the classifier, this paper proposes a double-layer Bayesian classifier ensembles (DLBCE) algorithm based on frequent itemsets. DLBCE constructs a double-layer Bayesian classifier (DLBC) for each frequent itemset the new instance contained and finally ensembles all the classifiers by assigning different weight to different classifier according to the conditional mutual information. The experimental results show that the proposed algorithm outperforms other outstanding algorithms.
基金supported by the National Natural Science Foundation of China(Grant No.61973037 and No.61673066).
文摘This paper considers the problem of target and jamming recognition for the pulse Doppler radar fuze(PDRF).To solve the problem,the matched filter outputs of the PDRF under the action of target and jamming are analyzed.Then,the frequency entropy and peak-to-peak ratio are extracted from the matched filter output of the PDRF,and the time-frequency joint feature is constructed.Based on the time-frequency joint feature,the naive Bayesian classifier(NBC)with minimal risk is established for target and jamming recognition.To improve the adaptability of the proposed method in complex environments,an online update process that adaptively modifies the classifier in the duration of the work of the PDRF is proposed.The experiments show that the PDRF can maintain high recognition accuracy when the signal-to-noise ratio(SNR)decreases and the jamming-to-signal ratio(JSR)increases.Moreover,the applicable analysis shows that he ONBCMR method has low computational complexity and can fully meet the real-time requirements of PDRF.
基金Supported by Gansu Province Natural Science Foundation(3ZS061-A25-045), and the“Qing Lan”Talent Engineering Funds of Lanazhou Jiaotong University(QL-06-19A)
基金Supported by the National Natural Science Foundation of China (No.60435020).
文摘Word Sense Disambiguation (WSD) is to decide the sense of an ambiguous word on particular context. Most of current studies on WSD only use several ambiguous words as test samples, thus leads to some limitation in practical application. In this paper, we perform WSD study based on large scale real-world corpus using two unsupervised learning algorithms based on ±n-improved Bayesian model and Dependency Grammar (DG)-improved Bayesian model. ±n-improved classifiers reduce the window size of context of ambiguous words with close-distance feature extraction method, and decrease the jamming of useless features, thus obviously improve the accuracy, reaching 83.18% (in open test). DG-improved classifier can more effectively conquer the noise effect existing in Naive-Bayesian classifier. Experimental results show that this approach does better on Chinese WSD, and the open test achieved an accuracy of 86.27%.
基金funded by the National Key R&D Program of China(2021YFC3320302).
文摘In recent years,deep learning algorithms have been popular in recognizing targets in synthetic aperture radar(SAR)images.However,due to the problem of overfitting,the performance of these models tends to worsen when just a small number of training data are available.In order to solve the problems of overfitting and an unsatisfied performance of the network model in the small sample remote sensing image target recognition,in this paper,we uses a deep residual network to autonomously acquire image features and proposes the Deep Feature Bayesian Classifier model(RBnet)for SAR image target recognition.In the RBnet,a Bayesian classifier is used to improve the effect of SAR image target recognition and improve the accuracy when the training data is limited.The experimental results on MSTAR dataset show that the RBnet can fully exploit effective information in limited samples and recognize the target of the SAR images more accurately.Compared with other state-of-the-art methods,our method offers significant recognition accuracy improvements under limited training data.Noted that theRBnet is moderately difficult to implement and has the value of popularization and application in engineering application scenarios in the field of small-sample remote sensing target recognition and recognition.
文摘This paper addresses the high dimension sample problem in discriminate analysis under nonparametric and supervised assumptions. Since there is a kind of equivalence between the probabilistic dependence measure and the Bayes classification error probability, we propose to use an iterative algorithm to optimize the dimension reduction for classification with a probabilistic approach to achieve the Bayes classifier. The estimated probabilities of different errors encountered along the different phases of the system are realized by the Kernel estimate which is adjusted in a means of the smoothing parameter. Experiment results suggest that the proposed approach performs well.
文摘Radio Frequency Identification (RFID) is wireless technology that has been designed to automatically identify tagged objects using a reader. Several applications of this technology have been introduced in past literature such as pet identification and luggage tracking which have increased the efficiency and effectiveness of each environment into which it was integrated. However, due to the ambiguous nature of the captured information with the existence of missing, wrong and duplicate readings, the wide-scale adoption of the architecture is limited to commercial sectors where the integrity of the observations can tolerate ambiguity. In this work, we propose an application of RFID to take the reporting of class attendance and to integrate a predictive classifier to extract high level meaningful information that can be used in diverse areas such as scheduling and low student retention. We conclude by providing an analysis of the core strengths and opportunities that exist for this concept and how we might extend it in future research.
基金supported by the National Natural Science Foundation of China(Grant Nos.U21A20153,41941018,52074258,41807250,42177140)the Key Research and Development Project of Hubei Province,China(Grant No.2021BCA133).
文摘Accurately predicting and estimating the squeezing and ground response to tunneling remains challenging.Moreover,tunnel-squeezing hazards are much more likely to occur in deeply buried long tunnels with complex engineering-geological environments.There-fore,a high-performance predictive model for tunnel squeezing is necessary.A superior ensemble classifier is put forward in this study,which is composed of four individual classifiers(gradient boosting classifier,extra-trees classifier,AdaBoost classifier,and Logistic regression classifier)and two optimization algorithms(Bayesian optimization(BO)and sparrow search algorithm(SSA)).The training database covers five parameters:tunnel depth(H),rock tunneling quality index(Q),tunnel diameter(D),support stiffness(K),and strength stress ratio(SSR),about which the basic information is accessible at the early design phases.However,the dataset compiled from the literature is insufficient.Thus,the ten proposed methods are used to replace the missing values.During the model training pro-cess,BO shows its strong ability to optimize seventeen hyperparameters.When applied to tune the classifiers’weights,SSA achieves a fast and efficient performance.The novel Shapley Additive Explanations–LightGBM method indicates that the K is the most important input feature,followed by SSR,Q,H,and D,respectively.The ensemble classifier is then validated using the test set and additional his-torical case projects.The validation shows that the model can achieve an accuracy of 98%(i.e.,the error rate is 2%)on the test set,higher than those achieved by previous prediction models.Moreover,the predicted probability could provide warning information for timely support measures.Finally,the application results are illustrated through tests on the tunnel sections that have not yet been excavated in the line of the Sichuan–Tibet railway project.The applied predictive tendencies and laws are in line with the practical experience.In sum-mary,the proposed model’s prediction results are reasonable,and its prediction will be more accurate as more data is collected and trained for prewarning the tunnel squeezing hazard.