期刊文献+
共找到574篇文章
< 1 2 29 >
每页显示 20 50 100
Numerical Prediction and Performance Experiment in a Deep-well Centrifugal Pump with Different Impeller Outlet Width 被引量:20
1
作者 SHI Weidong ZHOU Ling +2 位作者 LU Weigang PEI Bing LANG Tao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第1期46-52,共7页
The existing research of the deep-well centrifugal pump mainly focuses on reduce the manufacturing cost and improve the pump performance, and how to combine above two aspects together is the most difficult and importa... The existing research of the deep-well centrifugal pump mainly focuses on reduce the manufacturing cost and improve the pump performance, and how to combine above two aspects together is the most difficult and important topic. In this study, the performances of the deep-well centrifugal pump with four different impeller outlet widths are studied by the numerical, theoretical and experimental methods in this paper. Two stages deep-well centrifugal pump equipped with different impellers are simulated employing the commercial CFD software to solve the Navier-Stokes equations for three-dimensional incompressible steady flow. The sensitivity analyses of the grid size and turbulence model have been performed to improve numerical accuracy. The flow field distributions are acquired and compared under the design operating conditions, including the static pressure, turbulence kinetic energy and velocity. The prototype is manufactured and tested to certify the numerical predicted performance. The numerical results of pump performance are higher than the test results, but their change trends have an acceptable agreement with each other. The performance results indicted that the oversize impeller outlet width leads to poor pump performances and increasing shaft power. Changing the performance of deep-well centrifugal pump by alter impeller outlet width is practicable and convenient, which is worth popularizing in the engineering application. The proposed research enhances the theoretical basis of pump design to improve the performance and reduce the manufacturing cost of deep-well centrifugal pump. 展开更多
关键词 deep-well centrifugal pump impeller outlet width performance numerical simulation
下载PDF
EXPERIMENTAL STUDY ON HIGH-SPEED CENTRIFUGAL PUMPS WITH DIFFERENT IMPELLERS 被引量:10
2
作者 Zhu Zuchao Chen YingState Key Laboratory of Fluid Power Transmission and Control, Zhejiang University,Hangzhou 310027, ChinaHuang Dunhui Jin Qingming Cangnan Special Pumps Co.Ltd of Zhejiang Province 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2002年第4期372-375,共4页
The experimental study is carried out on high-speed centrifugal pumps withthree different impellers. The experimental results and analysis show that high-speed centrifugalpumps with a closed complex impeller can achie... The experimental study is carried out on high-speed centrifugal pumps withthree different impellers. The experimental results and analysis show that high-speed centrifugalpumps with a closed complex impeller can achieve the highest efficiency and the lowest headcoefficient followed by those with half-open impeller and open-impeller, and can obtain much easilystable head-capacity characrastic curve, while those with a half-open complex impeller can't. Thecharacteristic curve with a open impeller is almost constant horizontal line before droppingsharply. The results also show that the axial clearance between pump casing and impeller caninfluence greatly on the performance of centrifugal pumps. 展开更多
关键词 centrifugal pump HIGH-SPEED impeller EXPERIMENT
下载PDF
Impact of Impeller Stagger Angles on Pressure Fluctuation for a Double-Suction Centrifugal Pump 被引量:10
3
作者 Da-Chun Fu Fu-Jun Wang +2 位作者 Pei-Jian Zhou Ruo-Fu Xiao Zhi-Feng Yao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第1期198-211,共14页
Pressure fluctuation may cause high amplitude of vibration of double-suction centrifugal pumps, but the impact of impeller stagger angles is still not well understood. In this paper, pressure fluctuation experiments a... Pressure fluctuation may cause high amplitude of vibration of double-suction centrifugal pumps, but the impact of impeller stagger angles is still not well understood. In this paper, pressure fluctuation experiments are carried out for five impeller configurations with different stagger angles by using the same test rig system. Results show that the stagger angles exert negligible effects on the characteristics of head and efficiency. The distributions of pressure fluctuations are relatively uniform along the suction chamber wall, and the maximum pressure fluctuation amplitude is reached near the suction inlet tongue region. The pressure fluctuation characteristics are affected largely by impeller rotation, whose dominant frequencies include impeller rotation frequency and its harmonic frequencies, and half blade passage frequency. The stagger angle exerts a small effect on the pressure fluctuations in the suction chamber while a great effect on the pressure fluctuation in volute casing, especially on the aspect of decreasing the amplitude on blade passage frequency. Among the tested cases, the distribution of pressure fluctuations in the volute becomes more uniform than the other impeller configurations and the level of pressure fluctuation may be reduced by up to 50% when the impeller stagger angle is close to 24° or 360°.The impeller structure pattern needs to be taken into consideration during the design period, and the halfway staggered impeller is strongly recommended. 展开更多
关键词 Double-suction centrifugal pump impeller stagger angle Pressure fluctuation Frequency spectra analysis
下载PDF
Investigation of CFD Calculation Method of a Centrifugal Pump with Unshrouded Impeller 被引量:7
4
作者 WU Dazhuan YANG Shuai +3 位作者 XU Binjie LIU Qiaoling WU Peng WANG Leqin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第2期376-384,共9页
Currently, relatively large errors are found in numerical results in some low-specific-speed centrifugal pumps with unshrouded impeller because the effect of clearances and holes are not accurately modeled. Establishi... Currently, relatively large errors are found in numerical results in some low-specific-speed centrifugal pumps with unshrouded impeller because the effect of clearances and holes are not accurately modeled. Establishing an accurate analytical model to improve performance prediction accuracy is therefore necessary. In this paper, a three-dimensional numerical simulation is conducted to predict the performance of a low-specific-speed centrifugal pump, and the modeling, numerical scheme, and turbulent selection methods are discussed. The pump performance is tested in a model pump test bench, and flow rate, head, power and efficiency of the pump are obtained. The effect of taking into consideration the back-out vane passage, clearance, and balance holes is analyzed by comparing it with experimental results, and the performance prediction methods are validated by experiments. The analysis results show that the pump performance can be accurately predicted by the improved method. Ignoring the back-out vane passage in the calculation model of unshrouded impeller is found to generate better numerical results. Further, the calculation model with the clearances and balance holes can obviously enhance the numerical accuracy. The application of disconnect interface can reduce meshing difficulty but increase the calculation error at the off-design operating point at the same time. Compared with the standard k-ε, renormalization group k-ε, and Spalart-Allmars models, the Realizable k-ε model demonstrates the fastest convergent speed and the highest precision for the unshrouded impeller flow simulation. The proposed modeling and numerical simulation methods can improve the performance prediction accuracy of the low-specific-speed centrifugal pumps, and the modeling method is especially suitable for the centrifugal pump with unshrouded impeller. 展开更多
关键词 centrifugal pump unshrouded impeller numerical simulation CLEARANCE turbulence model
下载PDF
LES Analysis of the Unsteady Flow Characteristics of a Centrifugal Pump Impeller
5
作者 Ting Zhang Denghao Wu +3 位作者 Shijun Qiu Peijian Zhou Yun Ren Jiegang Mou 《Fluid Dynamics & Materials Processing》 EI 2022年第5期1349-1361,共13页
Stall phenomena increase the complexity of the internal flow in centrifugal pump impellers.In order to tackle this problem,in the present work,a large eddy simulation(LES)approach is applied to determine the character... Stall phenomena increase the complexity of the internal flow in centrifugal pump impellers.In order to tackle this problem,in the present work,a large eddy simulation(LES)approach is applied to determine the characteristics of these unstable flows.Moreover,a vorticity identification method is used to characterize quantitatively the vortex position inside the impeller and its influencing area.By comparing the outcomes of the numerical simulations and experimental results provided by a Particle Image Velocimetry(PIV)technique,it is shown that an apparent“alternating stall”phenomenon exists inside the impeller when relatively small flow rate conditions are considered.The stall is generated near the suction side of the blade inlet,grows towards the high-pressure side of the blade in the circumferential direction,and gradually attenuates.As the flow rate decreases,the number of stalls remains unchanged,while the related influencing area and strength gradually increase and the circumferential velocity increases. 展开更多
关键词 centrifugal pump impeller large eddy simulation unsteady flow stalls VORTICITY
下载PDF
CONSTRUCTION DESIGN AND FLOW ANALYSIS OF CENTRIFUGAL PUMP IMPELLER WITH SUPER-LOW SPECIFIC SPEED
6
作者 Yang Minguan Yuan Shouqi Cao Wuling Jiangsu University of Science and Technology 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1997年第4期66-70,共3页
Some commonly used constructions and their design principles of centrifugal pump impeller with super low specific speed are introduced. The internal flow related to pump performance is analysed primarily.
关键词 centrifugal pump impeller design Performance analysis
全文增补中
The Flow Simulation and Experimental Study of Low-Specific-Speed High-Speed Complex Centrifugal Impellers* 被引量:28
7
作者 崔宝玲 朱祖超 +1 位作者 张剑慈 陈鹰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第4期435-441,共7页
Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model, three-dimensional turbulent flow in four low-specific-speed centrifugal impellers are simulated numerically and analyzed. The relativ... Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model, three-dimensional turbulent flow in four low-specific-speed centrifugal impellers are simulated numerically and analyzed. The relative velocity distribution, pressure distribution and static pressure rise at the design point are obtained for the regular impeller with only long blades and three complex impellers with long, mid or short blades. It is found that the back flow region between long-blade pressure side and mid-blade suction side is diminished and is pushed to pressure side of short blades near the outlet of impeller at suction side by the introduction of mid, short blades, and the size of back flow becomes smaller in a multi-blade complex impeller. And the pressure rises uniformly from inlet to outlet in all the impellers. The simulated results show that the complex impeller with long, mid and short blades can improve the velocity distribution and reduce the back flow in the impeller channel. The experimental results show that the back flow in the impeller has an important influence on the performance of pump and a more-blade complex impeller with long, mid and short blades can effectively solve low flow rate instability of the low-specific-speed centrifugal pump. 展开更多
关键词 centrifugal pump low-specific-speed complex impeller flow simulation high speed experimentalstudy
下载PDF
The Flow Simulation and Experimental Study of Low-Specific-Speed High-Speed Complex Centrifugal Impellers 被引量:4
8
作者 崔宝玲 朱祖超 +1 位作者 张剑慈 陈鹰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第4X期435-441,共7页
关键词 centrifugal pump low-specific-speed COMPLEX impeller flow simulation high SPEED experimental study
下载PDF
Performance Prediction of an Optimized Centrifugal Pump with High Efficiency
9
作者 Yuqin Wang Luxiang Zhou +1 位作者 Mengle Han Lixiang Shen 《Fluid Dynamics & Materials Processing》 EI 2023年第9期2215-2228,共14页
The main structural parameters of the IR100-80-100A type chemical centrifugal pump have been optimized by means of an orthogonal test approach.The centrifugal pump has been modeled using the CFturbo software,and 16 se... The main structural parameters of the IR100-80-100A type chemical centrifugal pump have been optimized by means of an orthogonal test approach.The centrifugal pump has been modeled using the CFturbo software,and 16 sets of orthogonal-test schemes have been defined on the basis of 4 parameters,namely,the blade number,blade outlet angle,impeller outlet diameter,and impeller outlet width.Such analysis has been used to determine the influence of each index parameter on the pump working efficiency and identify a set of optimal combinations of such parameters.The internalflowfield in the centrifugal pump has been simulated by using the PumLinx software.These numerical results have shown that,compared with the prototype pump,the outlet pressure and shaft power of the optimized pump can be significantly reduced,and the pump working efficiency can be improved by 5.59%.In the present study,some arguments are also provided to demonstrate that,with respect to other optimization methods,the orthogonal test approach is more convenient,and requires less test times. 展开更多
关键词 centrifugal pump structural design work efficiency internal flow field simulation impeller
下载PDF
Numerical Simulation of Flow in Centrifugal Pump with Complex Impeller 被引量:20
10
作者 Bao-ling Cui Yong-gang Lin Ying-zi Jin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2011年第1期47-52,共6页
Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model,three dimensional turbulent flow fields in centrifugal pump with long-mid-short blade complex impeller are calculated and analyzed numeric... Based on the Navier-Stokes equations and the Spalart-Allmaras turbulence model,three dimensional turbulent flow fields in centrifugal pump with long-mid-short blade complex impeller are calculated and analyzed numerically.The relative velocity and pressure distributions in the flowpart are obtained.It is found that the flow in the passage of the complex impeller is unsymmetrical due to the joint action between volute and impeller.The back-flow region is at inlet of long-blade suction side,near middle part of long-blade pressure side and outlet of short-blade suction side.The flow near volute throat is affected greatly by volute.The relative velocity is large and it is easy to bring back flow at outlet of the complex impeller near volute throat.The static and total pressure rise uniformly from inlet to outlet in the impeller.At impeller outlet,the pressure periodically decreases from pressure side to suction side,and then the static pressure sharply rise near the throat.The experimental results show that the back flow in the impeller has an important influence on the performance of pump. 展开更多
关键词 Complex impeller centrifugal pump Numerical simulation EXPERIMENT
原文传递
Numerical and experimental comparison of the vaned diffuser interaction inside the impeller velocity field of a centrifugal pump 被引量:13
11
作者 ATIF Abdelmadjid BENMANSOUR Saad +1 位作者 BOIS Gerard DUPONT Patrick 《Science China(Technological Sciences)》 SCIE EI CAS 2011年第2期286-294,共9页
The paper refers to the analysis of interactions between the impeller and the vaned diffuser based on the air model of a radial flow pump.The study deals with a numerical simulation of the flow for a full 360°ent... The paper refers to the analysis of interactions between the impeller and the vaned diffuser based on the air model of a radial flow pump.The study deals with a numerical simulation of the flow for a full 360°entire impeller and diffuser.The task is carried out closely under the design operating conditions and for one particular position of the impeller blade with respect to the diffuser frame.Among all the results,the focus is mainly on the flow pattern at the exit part inside the impeller facing the diffuser vanes.The results are compared to the available PIV measurements. 展开更多
关键词 centrifugal pump impeller vaned diffuser rotor-stator interaction
原文传递
A general alternate loading technique and its applications in the inverse designs of centrifugal and mixed-flow pump impellers 被引量:11
12
作者 WANG ChaoYue WANG FuJun +5 位作者 AN DongSen YAO ZhiFeng XIAO RuoFu LU Li HE ChengLian ZOU ZhiChao 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2021年第4期898-918,共21页
For the inverse designs of centrifugal and mixed-flow pump impellers,clarifying the generation process of secondary flows and putting forward corresponding suppression measures is an important approach to improve the ... For the inverse designs of centrifugal and mixed-flow pump impellers,clarifying the generation process of secondary flows and putting forward corresponding suppression measures is an important approach to improve the impeller performance.In this paper,to provide a better qualitative insight into the generation mechanism of secondary flows in the impeller,a simple kinematic equation is derived based on the ideal assumptions,which indicates that the potential rothalpy gradient(PRG)is the most important dynamic source that actively induces secondary vortical flows.Induced by the natural adverse PRG on the S1 and S2 stream surfaces,two typical secondary flows,H-S and P-S secondary flows,are clearly presented.To specially suppress these typical secondary flows,a general alternate loading technique(GALT)is proposed,aiming to adjust the real blade loadingδp to control the PRG features.At the blade fore part,theδp on the hub streamline should be slowly increased to avoid breakneck growth of the potential rothalpy to reduce adverse streamwise PRG on the S2 streamsurface.At the blade middle part,theδp should be moderately decreased to reduce adverse streamwise PRG on the S1 streamsurface.At the blade aft part,the difference in theδp between the shroud and hub streamlines should be decreased faster to control the exit uniformity.By applying the GALT to the impeller designs of three typical pump types in hydraulic engineering,the organizational effect of the PRG on fundamental flow structures is proven.The GALT can effectively control the PRG distributions and suppress the secondary flows,thereby widening the pump’s high-efficiency zone,improving flow uniformity and suppressing pressure fluctuations.Compared with the current Z-G method and the ALT,the GALT can meet the requirements of"de-experience"better,thereby enabling the designers to obtain good products explicitly and quickly. 展开更多
关键词 alternate loading technique inverse design centrifugal pump mixed-flow pump impeller potential rothalpy gradient
原文传递
Experimental Study on a Centrifugal Pump with an Open Impeller during Startup Period 被引量:7
13
作者 Yuliang Zhang Zuchao Zhu +3 位作者 Yingzi Jin Baoling Cui Yi Li Huashu Dou 《Journal of Thermal Science》 SCIE EI CAS CSCD 2013年第1期1-6,共6页
Transient performance of fluid machinery during transient operating periods, such as startup and stopping, has been drawn more attentions recently due to the growing engineering needs. In this paper, the transient beh... Transient performance of fluid machinery during transient operating periods, such as startup and stopping, has been drawn more attentions recently due to the growing engineering needs. In this paper, the transient behavior of a prototype centrifugal pump with an open impeller during rapid startup period is studied experimentally. The variations of the rotational speed, flow rate, head, and shaft power during rapid startup period are recorded in ex- periments at different discharge valve openings. In addition, the non-dimensional flow rate and head are also used to analyze the transient behavior. The research result shows that the rise characteristic of the rotational speed is not basically changed by working points, while mainly depends on the startnp characteristics of the driving motor. Compared with the rapid rise of the rotational speed, the flow rate rises slowly in the initial stage of startup. Moreover, the flow rate lags behind the rotational speed to rise to final stable value, and the delay becomes more severe with the increase of the discharge valve opening. The shaft power impact phenomenon generally exists in the process of startup. The non-dimensional analysis shows that the non-dimensional head is very high at the very beginning of startup, and quickly falls to the minimum, then gradually rises to final stable value, while the non-dimensional flow rate always shows the rise tendency during whole startup period. In conclusion, it is found from the non-dimensional results that the quasi-steady analysis is unable to accurately assess the transient flow during startup period. 展开更多
关键词 centrifugal pump open impeller STARTUP experimental study transient behavior
原文传递
Experimental investigation of the unsteady flow in a double-blade centrifugal pump impeller 被引量:8
14
作者 LIU HouLin WANG Kai +1 位作者 KIM Hyoung-Bum TAN MingGao 《Science China(Technological Sciences)》 SCIE EI CAS 2013年第4期812-817,共6页
Particle Image Velocimetry (PIV) technology was used to study the unsteady internal flow in a double-blade centrifugal pump (DBCP) impeller at the design flow rate.Relative velocity distributions and turbulence intens... Particle Image Velocimetry (PIV) technology was used to study the unsteady internal flow in a double-blade centrifugal pump (DBCP) impeller at the design flow rate.Relative velocity distributions and turbulence intensity distributions in the DBCP impeller at six phase conditions were obtained.And mean dimensionless relative velocity,turbulence intensity,mean absolute flow angle,mean relative flow angle,mean dynamic pressure and mean angular momentum distributions at the different radii of impeller were calculated.Results show that from impeller inlet to impeller outlet,turbulence intensities gradually decrease.With the increase of radius r,mean dimensionless relative velocity first decreases and then increases,while variation tendencies of mean absolute flow angle and mean dynamic pressure are the opposite.With the increase of radius r,turbulence intensity and mean relative flow angle first decrease,then increase,and then decrease,while mean angular momentum gradually increases. 展开更多
关键词 double-blade centrifugal pump impeller unsteady flow Particle Image Velocimetry (PIV)
原文传递
The effect of impeller slot jet on centrifugal pump performance 被引量:2
15
作者 Ren-hui Zhang Li-chen Yun Jing Li 《Journal of Hydrodynamics》 SCIE EI CSCD 2019年第4期733-739,共7页
To improve the cavitation performance of the centrifugal pump, a new kind of centrifugal pump impeller with slot is proposed. The slot is on the impeller shroud near the suction side of the blade leading edge. So, the... To improve the cavitation performance of the centrifugal pump, a new kind of centrifugal pump impeller with slot is proposed. The slot is on the impeller shroud near the suction side of the blade leading edge. So, the fluid with high energy in the impeller front side chamber is drained to the lowest pressure area. The jet flow would compensate the blade inlet flow with a certain energy. With numerical simulations, the pump's inner flows for 5 different slot sizes and their hydraulic performances are compared with those of the prototype pump. The slot jet would result in the increase of the impeller flow rate and the volute area ratio, leading to the head decrease within the whole flow rate range. The slot jet can suppress the reverse flow remarkably at a low flow rate, and the pump efficiency is improved. The slot jet improves the pump cavitation performance effectively, especially at a low flow rate. To some extent, the smaller the slot size is, the better the pump cavitation performance is. The cavitation performance of the slot impeller with a size of 2 mmx 1.75 mm is much better than that of the prototype impeller. Compared with the prototype impeller, the lowest pressure near the slot impeller blade inlet and even the pressure in all forepart regions are improved significantly. The slot impeller is shown to be effective in suppressing the cavitation, and the available net positive suction head is improved. 展开更多
关键词 centrifugal pump SLOT impeller SLOT jet CAVITATION performance CIRCULATION flow
原文传递
Research on Performance of Centrifugal Pump with Different-type Open Impeller 被引量:2
16
作者 CUI Baoling CHEN Desheng +3 位作者 WANG Canfei ZHU Zuchao JIN Yingzi JIN Yuzhen 《Journal of Thermal Science》 SCIE EI CAS CSCD 2013年第6期586-591,共6页
To investigate the influence of impeller type on the performance and inner flow of centrifugal pump, the numeri- cal simulation and experimental research were carried out on the same centrifugal pump with straight-bla... To investigate the influence of impeller type on the performance and inner flow of centrifugal pump, the numeri- cal simulation and experimental research were carried out on the same centrifugal pump with straight-blade and curved-blade open impeller. Based on SIMPLEC algorithm, time-averaged N-S equation and the standard k-e turbulence model, the numerical results are obtained. The pressure distribution in the different type impellers is uniform, while the low pressure area in straight-blade inlet is larger. The vortexes in the passage of impeller exist in both cases. Relative to curved-blade impeller, there are larger vortexes in most of the flow passages except the passage near the tongue in straight-blade impeller. Also some small backflow regions are found at the blade inlet of two impellers. The characteristic curves achieved by numerical simulation basieaUy agree with those by experiment, and straight-blade open impeller centrifugal pump has a better hydraulic performance. 展开更多
关键词 open impeller centrifugal pump numerical simulation EXPERIMENT
原文传递
屏蔽式离心泵浮动叶轮轴向力平衡方法
17
作者 王鑫 吴一帆 +3 位作者 吴成硕 武鹏 杨帅 吴大转 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第8期1577-1584,1603,共9页
为了实现屏蔽泵离心叶轮轴向力平衡,设计浮动叶轮轴向力自平衡结构,借助全流道三维数值模拟手段,研究浮动叶轮的轴向力平衡作用机理和影响因素.在对数值模拟方法进行试验验证的基础上,开展针对不同工况下叶轮不同轴向位置轴向力的数值计... 为了实现屏蔽泵离心叶轮轴向力平衡,设计浮动叶轮轴向力自平衡结构,借助全流道三维数值模拟手段,研究浮动叶轮的轴向力平衡作用机理和影响因素.在对数值模拟方法进行试验验证的基础上,开展针对不同工况下叶轮不同轴向位置轴向力的数值计算.数值模拟结果表明,在同一流量工况下,在叶轮浮动范围内,当叶轮向泵入口方向移动时,泵前腔泄漏量减小,扬程和效率增大,且越靠近入口,对泵的性能影响越显著.轴向力呈现先减后增的趋势,在远离入口时方向指向泵入口,在靠近入口时,叶轮轴向力迅速增大,实现反向,指向泵出口,帮助叶轮停止向入口移动,这种轴向力变化趋势可以使叶轮在工作时始终处于浮动状态,实现轴向力自平衡. 展开更多
关键词 离心泵 浮动叶轮 轴向位置 轴向力
下载PDF
叶轮开孔参数对气液两相高速离心泵的影响
18
作者 王彦伟 许继洋 李育房 《化学工程》 CAS CSCD 北大核心 2024年第8期71-77,共7页
为保持高速离心泵在气液两相条件下的性能稳定性,采用CFD数值模拟方法探究不同孔径和位置叶轮开孔对高速离心泵的性能影响。结果表明:开孔泵的性能趋于稳定,随着入口含气率的增大,开孔泵的扬程逐渐降低。而原始无孔泵扬程随着入口含气... 为保持高速离心泵在气液两相条件下的性能稳定性,采用CFD数值模拟方法探究不同孔径和位置叶轮开孔对高速离心泵的性能影响。结果表明:开孔泵的性能趋于稳定,随着入口含气率的增大,开孔泵的扬程逐渐降低。而原始无孔泵扬程随着入口含气率的增大而显著下降。因此,在入口含气率较大的情况下,开孔可以提高高速离心泵的性能;当入口含气率不足时,有孔泵的性能不如原始无孔泵,扬程随着孔径的增大而减小。当孔径为3.5 mm时,扬程衰减超过18%,因此孔径不应>3 mm;随着开孔孔径的增大,叶轮中的气体体积减小,而孔径越大,泵内的水力损失越大。因此在选择孔径时,必须在叶轮中的气体体积和泵的水力损失之间进行权衡;开孔的径向位置值越小,孔越靠近叶轮中心,水力损失越大;开孔的径向位置值越大,叶轮中气体体积就越大,在选择开孔的径向位置时,仍然需要权衡。对于所研究的高速离心泵,仿真结果表明,径向位置为14 mm和孔径为2 mm的选择是可取的,可以很好地平衡叶轮中气体体积和水力损失。 展开更多
关键词 离心泵 开孔叶轮 数值模拟 气液两相 含气率
下载PDF
次级叶轮进口直径变化对多级离心泵水力性能的影响 被引量:1
19
作者 孙泽鹏 王秀勇 +2 位作者 龚贤辉 王正港 周建强 《液压气动与密封》 2024年第2期35-38,共4页
为了提高多级离心泵的水力效率,以次级叶轮的进口直径为优化对象,保持叶片型线的方格网不变,共设计了5组具有不同进口直径的水力优化方案,基于RNG k-ε湍流模型进行定常数值计算,探讨次级叶轮进口直径的变化对多级离心泵水力性能的影响... 为了提高多级离心泵的水力效率,以次级叶轮的进口直径为优化对象,保持叶片型线的方格网不变,共设计了5组具有不同进口直径的水力优化方案,基于RNG k-ε湍流模型进行定常数值计算,探讨次级叶轮进口直径的变化对多级离心泵水力性能的影响。结果表明:在一定范围内减小叶轮进口直径,能够降低叶轮的扬程与轴功率,但扬程减小的幅度有限,最低扬程仅比最高扬程减小了0.64%,而轴功率的降低幅度比较明显,最小轴功率比最大轴功率降低了1.90%,最终可使叶轮的水力效率提高1.29%,多级离心泵次级叶轮的进口直径存在最佳值,能使泵的水力效率相对较高。 展开更多
关键词 次级叶轮 进口直径 水力优化 数值模拟 多级离心泵
下载PDF
Numerical Study of Unsteady Flows with Cavitation in a High-Speed MicroCentrifugal Pump 被引量:9
20
作者 LI Yeqiang YUAN Shiwei LAI Huanxin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2017年第1期18-24,共7页
The unsteady flows caused by the interaction between the impeller and the volute in a high-speed micro centrifugal pump are numerically studied. The internal flows of both with and without cavitations are analyzed usi... The unsteady flows caused by the interaction between the impeller and the volute in a high-speed micro centrifugal pump are numerically studied. The internal flows of both with and without cavitations are analyzed using the CFX. The characteristics of unsteady pressure on the blade surfaces and the symmetric plane of the volute are presented and compared. The results show that the amplitudes of pressure fluctuations of critical cavitation on the blade pressure surface (PS) are bigger as compared with those at the non-cavitation condition, but on the suction surface (SS), the situation is on the contrary. When cavitation occurs, reduction of load in the impeller is a result. In the present study, such reduction of load is observed mainly on the first half of the blades. Pressure fluctuations at five monitoring points, denoted by WK1 to WK5 in the volute, are also analyzed. No matter at the critical cavitation or at the non-cavitation conditions, the monitored pressure fluctuations are at the same frequencies, which equal to the blade passing frequency (BPF) and its multiples. However, the amplitudes of the fluctuations at critical cavitation condition are considerably stronger, as compared with those for without cavitation. © 2017, Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag Berlin Heidelberg. 展开更多
关键词 centrifugal pumps impellerS pumpS Unsteady flow
原文传递
上一页 1 2 29 下一页 到第
使用帮助 返回顶部