In this paper, some new existence and uniqueness of common fixed points for four mappings are obtained, which do not satisfy continuity and commutation on non-normal cone metric spaces. These results improve and gener...In this paper, some new existence and uniqueness of common fixed points for four mappings are obtained, which do not satisfy continuity and commutation on non-normal cone metric spaces. These results improve and generalize several well-known comparable results in the literature.展开更多
In this paper, some new existence and uniqueness of common fixed points for three mappings of Lipschitz type are obtained. The conditions are greatly weaker than the classic conditions in cone metric spaces. These res...In this paper, some new existence and uniqueness of common fixed points for three mappings of Lipschitz type are obtained. The conditions are greatly weaker than the classic conditions in cone metric spaces. These results improve and generalize several wellknown comparable results in the literature. Moreover, our results are supported by some examples.展开更多
In this paper, we consider a notion of contractive mappings with certain conditions in cone metric spaces and obtain some results of fixed points by using some necessary conditions. The results directly improve and ge...In this paper, we consider a notion of contractive mappings with certain conditions in cone metric spaces and obtain some results of fixed points by using some necessary conditions. The results directly improve and generalize some fixed point results in metric soaces and some previous results in cone metric spaces.展开更多
In this paper, we obtain a class of common fixed point theorems for generalized Lipschitz mappings in cone metric spaces with Banach algebras without the assumption of normality of cones. The results greatly generaliz...In this paper, we obtain a class of common fixed point theorems for generalized Lipschitz mappings in cone metric spaces with Banach algebras without the assumption of normality of cones. The results greatly generalize some results in the literature. Moreover,we give an example to support the main assertions.展开更多
In this paper we develop the Banach contraction principle and Kannan fixed point theorem on generalized cone metric spaces. We prove a version of Suzuki and Kannan type generalizations of fixed point theorems in gener...In this paper we develop the Banach contraction principle and Kannan fixed point theorem on generalized cone metric spaces. We prove a version of Suzuki and Kannan type generalizations of fixed point theorems in generalized cone metric spaces.展开更多
In this paper, we prove some fixed point theorems for generalized contractions in the setting of G-metric spaces. Our results extend a result of Edelstein [M. Edelstein, On fixed and periodic points under contractive ...In this paper, we prove some fixed point theorems for generalized contractions in the setting of G-metric spaces. Our results extend a result of Edelstein [M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37 (1962), 74-79] and a result of Suzuki [T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal., 71 (2009), 5313-5317]. We prove, also, a fixed point theorem in the setting of G-cone metric spaces.展开更多
In order to develop and improve the fixed point theorems in cone metric spaces, some new fixed point theorems are presented for two mappings in cone metric spaces which satisfy contractive conditions, where the cone i...In order to develop and improve the fixed point theorems in cone metric spaces, some new fixed point theorems are presented for two mappings in cone metric spaces which satisfy contractive conditions, where the cone is not necessarily normal. Our results generalize fixed point theorems of Abbas, Jungck and Stojan Radenovi in cone metric spaces.展开更多
Some common fixed point results for mappings satisfying a quasi-contractive condition which involves altering distance functions are obtained in partially ordered complete cone metric spaces. A sufficient condition fo...Some common fixed point results for mappings satisfying a quasi-contractive condition which involves altering distance functions are obtained in partially ordered complete cone metric spaces. A sufficient condition for the uniqueness of common fixed point is proved. Also, an example is given to support our results.展开更多
In this paper, we introduce the concept of generalized g-quasi-contractions in the setting of cone b-metric spaces over Banach algebras. By omitting the assump- tion of normality we establish common fixed point theore...In this paper, we introduce the concept of generalized g-quasi-contractions in the setting of cone b-metric spaces over Banach algebras. By omitting the assump- tion of normality we establish common fixed point theorems for the generalized g- quasi-contractions with the spectral radius r(λ) of the g-quasi-contractive constant vector λ satisfying r(λ) ∈[0,1) in the setting of cone b-metric spaces over Banach al- gebras, where the coefficient s satisfies s ≥ 1. The main results generalize, extend and unify several well-known comparable results in the literature.展开更多
In this paper, we use the mappings with quasi-contractive conditions, defined on a partially ordered set with cone metric structure, to construct convergent sequences and prove that the limits of the constructed seque...In this paper, we use the mappings with quasi-contractive conditions, defined on a partially ordered set with cone metric structure, to construct convergent sequences and prove that the limits of the constructed sequences are the unique (common) fixed point of the mappings, and give their corollaries. The obtained results improve and generalize the corresponding conclusions in references.展开更多
A new common fixed point result for a countable family of non-self mappings defined on a closed subset of a cone metric space with the convex property is obtained, and from which, a more general result is given. Our m...A new common fixed point result for a countable family of non-self mappings defined on a closed subset of a cone metric space with the convex property is obtained, and from which, a more general result is given. Our main results improve and generalize many known common fixed point theorems.展开更多
Some topological properties of cone metric spaces are discussed and proved that every cone metric space (X, d) is complete if and only if every family of closed subsets of X which has the finite intersection propert...Some topological properties of cone metric spaces are discussed and proved that every cone metric space (X, d) is complete if and only if every family of closed subsets of X which has the finite intersection property and which for every c ε E, 0 〈〈 c contains a set of diameter less that c has non-empty intersection.展开更多
A new unique common fixed point result for a pair of mappings satisfying certain quasi-Lipschitz type conditions on a topological vector space-valued cone metric space is obtained, and its particular forms and a more ...A new unique common fixed point result for a pair of mappings satisfying certain quasi-Lipschitz type conditions on a topological vector space-valued cone metric space is obtained, and its particular forms and a more general form are given. Our main results generalize and improve some well-known recent results in the literature.展开更多
In this paper,we obtain some tripled common random fixed point and tripled random fixed point theorems with several generalized Lipschitz constants in such spaces.We consider the obtained assertions without the assump...In this paper,we obtain some tripled common random fixed point and tripled random fixed point theorems with several generalized Lipschitz constants in such spaces.We consider the obtained assertions without the assumption of normality of cones.The presented results generalize some coupled common fixed point theorems in the existing literature.展开更多
In this paper, we introduce a G metric on the G-cone metric space and then prove that a complete G-cone metric space is always a complete G metric space and verify that a contractive mapping on the G-cone metric space...In this paper, we introduce a G metric on the G-cone metric space and then prove that a complete G-cone metric space is always a complete G metric space and verify that a contractive mapping on the G-cone metric space is a contractive mapping on the G metric space. At last, we also give a new way to obtain the unique fixed point on G-cone metric space.展开更多
The purpose of this paper is to improve some famous theorems for contractive mapping from ρ(α + β) ∈ [0,1/s) to ρ(α + β) ∈ [0, 1) in ordered cone b-metric spaces over Banach algebras with coefficient s ≥ 1(ρ...The purpose of this paper is to improve some famous theorems for contractive mapping from ρ(α + β) ∈ [0,1/s) to ρ(α + β) ∈ [0, 1) in ordered cone b-metric spaces over Banach algebras with coefficient s ≥ 1(ρ(x) is the spectral radius of the generalized Lipschitz constant x). Moreover, some similar improvements in ordered cone b-metric spaces are also obtained, which from α + β∈ [0,1/s) to α + β∈ [0, 1). Some examples are given to support that our new results are genuine improvements and generalizations.展开更多
In this work, we introduce a few versions of Caristi’s fixed point theorems in G-cone metric spaces which extend Caristi’s fixed point theorems in metric spaces. Analogues of such fixed point theorems are proved in ...In this work, we introduce a few versions of Caristi’s fixed point theorems in G-cone metric spaces which extend Caristi’s fixed point theorems in metric spaces. Analogues of such fixed point theorems are proved in this space. Our work extends a good number of results in this area of research.展开更多
In this paper we obtain fixed point and common fixed point theorems for self- mappings defined on a metric-type space, an ordered metric-type space or a normal cone metric space. Moreover, some examples and an applica...In this paper we obtain fixed point and common fixed point theorems for self- mappings defined on a metric-type space, an ordered metric-type space or a normal cone metric space. Moreover, some examples and an application to integral equations are given to illustrate the usability of the obtained results.展开更多
In this paper, we consider a countable family of surjective mappings {Tn}n∈N satisfying certain quasi-contractive conditions. We also construct a convergent sequence { Xn } n c∈Nby the quasi-contractive conditions o...In this paper, we consider a countable family of surjective mappings {Tn}n∈N satisfying certain quasi-contractive conditions. We also construct a convergent sequence { Xn } n c∈Nby the quasi-contractive conditions of { Tn } n ∈N and the boundary condition of a given complete and closed subset of a cone metric space X with convex structure, and then prove that the unique limit x" of {xn}n∈N is the unique common fixed point of {Tn}n∈N. Finally, we will give more generalized common fixed point theorem for mappings {Ti,j}i,j∈N. The main theorems in this paper generalize and improve many known common fixed point theorems for a finite or countable family of mappings with quasi-contractive conditions.展开更多
In this paper, we give some new results of common fixed point theorems and coincidence point case for some iterative method. By using of variation iteration method and an effective modification of He’s variation iter...In this paper, we give some new results of common fixed point theorems and coincidence point case for some iterative method. By using of variation iteration method and an effective modification of He’s variation iteration method discusses some integral and differential equations, we give out some new conclusion and more new examples.展开更多
文摘In this paper, some new existence and uniqueness of common fixed points for four mappings are obtained, which do not satisfy continuity and commutation on non-normal cone metric spaces. These results improve and generalize several well-known comparable results in the literature.
基金Supported by the Foundation of Education Ministry of Hubei Province(D20102502)
文摘In this paper, some new existence and uniqueness of common fixed points for three mappings of Lipschitz type are obtained. The conditions are greatly weaker than the classic conditions in cone metric spaces. These results improve and generalize several wellknown comparable results in the literature. Moreover, our results are supported by some examples.
基金Supported by the Graduate Initial Fund of Hubei Normal University(2008D36)Supported by the Foundation of Education Ministry of Hubei Province(D20102502)
文摘In this paper, we consider a notion of contractive mappings with certain conditions in cone metric spaces and obtain some results of fixed points by using some necessary conditions. The results directly improve and generalize some fixed point results in metric soaces and some previous results in cone metric spaces.
基金Supported by the Science and Technology Research Project of the Education Department of Hubei Province(B2015137) Supported by the National Social Science Foundation of China(12BZS050)
文摘In this paper, we obtain a class of common fixed point theorems for generalized Lipschitz mappings in cone metric spaces with Banach algebras without the assumption of normality of cones. The results greatly generalize some results in the literature. Moreover,we give an example to support the main assertions.
文摘In this paper we develop the Banach contraction principle and Kannan fixed point theorem on generalized cone metric spaces. We prove a version of Suzuki and Kannan type generalizations of fixed point theorems in generalized cone metric spaces.
基金supported by Università degli Studi di Palermo (Local University Project ex 60%)
文摘In this paper, we prove some fixed point theorems for generalized contractions in the setting of G-metric spaces. Our results extend a result of Edelstein [M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc., 37 (1962), 74-79] and a result of Suzuki [T. Suzuki, A new type of fixed point theorem in metric spaces, Nonlinear Anal., 71 (2009), 5313-5317]. We prove, also, a fixed point theorem in the setting of G-cone metric spaces.
基金Foundation item: Supported by the NNSF of China(10771212) Supported by the Natural Science Foundation of Xuzhou Normal University(09KLB03)
文摘In order to develop and improve the fixed point theorems in cone metric spaces, some new fixed point theorems are presented for two mappings in cone metric spaces which satisfy contractive conditions, where the cone is not necessarily normal. Our results generalize fixed point theorems of Abbas, Jungck and Stojan Radenovi in cone metric spaces.
基金Supported by the National Natural Science Foundation of China(11271293)
文摘Some common fixed point results for mappings satisfying a quasi-contractive condition which involves altering distance functions are obtained in partially ordered complete cone metric spaces. A sufficient condition for the uniqueness of common fixed point is proved. Also, an example is given to support our results.
基金supported by the National Natural Science Foundation of China(No.11361064)the project No.174024 of the Ministry of Education,Science and Technological Department of the Republic of Serbia
文摘In this paper, we introduce the concept of generalized g-quasi-contractions in the setting of cone b-metric spaces over Banach algebras. By omitting the assump- tion of normality we establish common fixed point theorems for the generalized g- quasi-contractions with the spectral radius r(λ) of the g-quasi-contractive constant vector λ satisfying r(λ) ∈[0,1) in the setting of cone b-metric spaces over Banach al- gebras, where the coefficient s satisfies s ≥ 1. The main results generalize, extend and unify several well-known comparable results in the literature.
文摘In this paper, we use the mappings with quasi-contractive conditions, defined on a partially ordered set with cone metric structure, to construct convergent sequences and prove that the limits of the constructed sequences are the unique (common) fixed point of the mappings, and give their corollaries. The obtained results improve and generalize the corresponding conclusions in references.
基金Foundation item: Supported by the National Natural Science Foundation of China(11361064)
文摘A new common fixed point result for a countable family of non-self mappings defined on a closed subset of a cone metric space with the convex property is obtained, and from which, a more general result is given. Our main results improve and generalize many known common fixed point theorems.
基金Foundation item: Supported by tile National Natural Science Foundation of China(10971185, 10971186) Supported by the Research Fund for Higher Education of Fujian Province(JK2011031)
文摘Some topological properties of cone metric spaces are discussed and proved that every cone metric space (X, d) is complete if and only if every family of closed subsets of X which has the finite intersection property and which for every c ε E, 0 〈〈 c contains a set of diameter less that c has non-empty intersection.
基金Supported by the National Natural Science Foundation of China(11361064)
文摘A new unique common fixed point result for a pair of mappings satisfying certain quasi-Lipschitz type conditions on a topological vector space-valued cone metric space is obtained, and its particular forms and a more general form are given. Our main results generalize and improve some well-known recent results in the literature.
基金supported by the Foundation of Education Ministry,Hubei Province,China(Q20122203)
文摘In this paper,we obtain some tripled common random fixed point and tripled random fixed point theorems with several generalized Lipschitz constants in such spaces.We consider the obtained assertions without the assumption of normality of cones.The presented results generalize some coupled common fixed point theorems in the existing literature.
基金Supported by the Natural Science Foundation of Hubei Province Education Department (Q20132505) Supported by the PhD Start-up Fund of Hanshan Normal University of Guangdong Province(QD20110920)
文摘In this paper, we introduce a G metric on the G-cone metric space and then prove that a complete G-cone metric space is always a complete G metric space and verify that a contractive mapping on the G-cone metric space is a contractive mapping on the G metric space. At last, we also give a new way to obtain the unique fixed point on G-cone metric space.
基金Supported by Yunnan Applied Basic Research Projects(2016FD082)Guiding project of Scientific Research Fund of Yunnan Provincial Education Department(2016ZDX151)
文摘The purpose of this paper is to improve some famous theorems for contractive mapping from ρ(α + β) ∈ [0,1/s) to ρ(α + β) ∈ [0, 1) in ordered cone b-metric spaces over Banach algebras with coefficient s ≥ 1(ρ(x) is the spectral radius of the generalized Lipschitz constant x). Moreover, some similar improvements in ordered cone b-metric spaces are also obtained, which from α + β∈ [0,1/s) to α + β∈ [0, 1). Some examples are given to support that our new results are genuine improvements and generalizations.
文摘In this work, we introduce a few versions of Caristi’s fixed point theorems in G-cone metric spaces which extend Caristi’s fixed point theorems in metric spaces. Analogues of such fixed point theorems are proved in this space. Our work extends a good number of results in this area of research.
基金supported by Universit`a degliStudi di Palermo(Local University Project ex 60%)
文摘In this paper we obtain fixed point and common fixed point theorems for self- mappings defined on a metric-type space, an ordered metric-type space or a normal cone metric space. Moreover, some examples and an application to integral equations are given to illustrate the usability of the obtained results.
基金supported by the National Natural Science Foundation of China (No. 11261062 and No. 11361064)
文摘In this paper, we consider a countable family of surjective mappings {Tn}n∈N satisfying certain quasi-contractive conditions. We also construct a convergent sequence { Xn } n c∈Nby the quasi-contractive conditions of { Tn } n ∈N and the boundary condition of a given complete and closed subset of a cone metric space X with convex structure, and then prove that the unique limit x" of {xn}n∈N is the unique common fixed point of {Tn}n∈N. Finally, we will give more generalized common fixed point theorem for mappings {Ti,j}i,j∈N. The main theorems in this paper generalize and improve many known common fixed point theorems for a finite or countable family of mappings with quasi-contractive conditions.
文摘In this paper, we give some new results of common fixed point theorems and coincidence point case for some iterative method. By using of variation iteration method and an effective modification of He’s variation iteration method discusses some integral and differential equations, we give out some new conclusion and more new examples.