Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust l...Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust localization method that integrates kernel density estimation(KDE)with damping linear correction to enhance the precision of microseismic/acoustic emission(MS/AE)source positioning.Our approach systematically addresses abnormal arrival times through a three-step process:initial location by 4-arrival combinations,elimination of outliers based on three-dimensional KDE,and refinement using a linear correction with an adaptive damping factor.We validate our method through lead-breaking experiments,demonstrating over a 23%improvement in positioning accuracy with a maximum error of 9.12 mm(relative error of 15.80%)—outperforming 4 existing methods.Simulations under various system errors,outlier scales,and ratios substantiate our method’s superior performance.Field blasting experiments also confirm the practical applicability,with an average positioning error of 11.71 m(relative error of 7.59%),compared to 23.56,66.09,16.95,and 28.52 m for other methods.This research is significant as it enhances the robustness of MS/AE source localization when confronted with data anomalies.It also provides a practical solution for real-world engineering and safety monitoring applications.展开更多
In real-world applications, datasets frequently contain outliers, which can hinder the generalization ability of machine learning models. Bayesian classifiers, a popular supervised learning method, rely on accurate pr...In real-world applications, datasets frequently contain outliers, which can hinder the generalization ability of machine learning models. Bayesian classifiers, a popular supervised learning method, rely on accurate probability density estimation for classifying continuous datasets. However, achieving precise density estimation with datasets containing outliers poses a significant challenge. This paper introduces a Bayesian classifier that utilizes optimized robust kernel density estimation to address this issue. Our proposed method enhances the accuracy of probability density distribution estimation by mitigating the impact of outliers on the training sample’s estimated distribution. Unlike the conventional kernel density estimator, our robust estimator can be seen as a weighted kernel mapping summary for each sample. This kernel mapping performs the inner product in the Hilbert space, allowing the kernel density estimation to be considered the average of the samples’ mapping in the Hilbert space using a reproducing kernel. M-estimation techniques are used to obtain accurate mean values and solve the weights. Meanwhile, complete cross-validation is used as the objective function to search for the optimal bandwidth, which impacts the estimator. The Harris Hawks Optimisation optimizes the objective function to improve the estimation accuracy. The experimental results show that it outperforms other optimization algorithms regarding convergence speed and objective function value during the bandwidth search. The optimal robust kernel density estimator achieves better fitness performance than the traditional kernel density estimator when the training data contains outliers. The Naïve Bayesian with optimal robust kernel density estimation improves the generalization in the classification with outliers.展开更多
The application of frequency distribution statistics to data provides objective means to assess the nature of the data distribution and viability of numerical models that are used to visualize and interpret data.Two c...The application of frequency distribution statistics to data provides objective means to assess the nature of the data distribution and viability of numerical models that are used to visualize and interpret data.Two commonly used tools are the kernel density estimation and reduced chi-squared statistic used in combination with a weighted mean.Due to the wide applicability of these tools,we present a Java-based computer application called KDX to facilitate the visualization of data and the utilization of these numerical tools.展开更多
The accurate estimation of road traffic states can provide decision making for travelers and traffic managers. In this work,an algorithm based on kernel-k nearest neighbor(KNN) matching of road traffic spatial charact...The accurate estimation of road traffic states can provide decision making for travelers and traffic managers. In this work,an algorithm based on kernel-k nearest neighbor(KNN) matching of road traffic spatial characteristics is presented to estimate road traffic states. Firstly, the representative road traffic state data were extracted to establish the reference sequences of road traffic running characteristics(RSRTRC). Secondly, the spatial road traffic state data sequence was selected and the kernel function was constructed, with which the spatial road traffic data sequence could be mapped into a high dimensional feature space. Thirdly, the referenced and current spatial road traffic data sequences were extracted and the Euclidean distances in the feature space between them were obtained. Finally, the road traffic states were estimated from weighted averages of the selected k road traffic states, which corresponded to the nearest Euclidean distances. Several typical links in Beijing were adopted for case studies. The final results of the experiments show that the accuracy of this algorithm for estimating speed and volume is 95.27% and 91.32% respectively, which prove that this road traffic states estimation approach based on kernel-KNN matching of road traffic spatial characteristics is feasible and can achieve a high accuracy.展开更多
In the process of large-scale,grid-connected wind power operations,it is important to establish an accurate probability distribution model for wind farm fluctuations.In this study,a wind power fluctuation modeling met...In the process of large-scale,grid-connected wind power operations,it is important to establish an accurate probability distribution model for wind farm fluctuations.In this study,a wind power fluctuation modeling method is proposed based on the method of moving average and adaptive nonparametric kernel density estimation(NPKDE)method.Firstly,the method of moving average is used to reduce the fluctuation of the sampling wind power component,and the probability characteristics of the modeling are then determined based on the NPKDE.Secondly,the model is improved adaptively,and is then solved by using constraint-order optimization.The simulation results show that this method has a better accuracy and applicability compared with the modeling method based on traditional parameter estimation,and solves the local adaptation problem of traditional NPKDE.展开更多
In this paper, we define the Weibull kernel and use it to nonparametric estimation of the probability density function (pdf) and the hazard rate function for independent and identically distributed (iid) data. The bia...In this paper, we define the Weibull kernel and use it to nonparametric estimation of the probability density function (pdf) and the hazard rate function for independent and identically distributed (iid) data. The bias, variance and the optimal bandwidth of the proposed estimator are investigated. Moreover, the asymptotic normality of the proposed estimator is investigated. The performance of the proposed estimator is tested using simulation study and real data.展开更多
Single image motion deblurring has been a very challenging problem in the field of image processing. Although there are many researches had been proposed to solve this problem, it still has problems on kernel accuracy...Single image motion deblurring has been a very challenging problem in the field of image processing. Although there are many researches had been proposed to solve this problem, it still has problems on kernel accuracy. In order to improve the kernel accuracy, an effective structure selection method was used to select the salient structure of the blur image. Then a novel kernel estimation method based on L0-2 norm was proposed. To guarantee the sparse kernel and eliminate the negative influence of details L0-norm was used. And L2-norm was used to ensure the continuity of kernel. Many experiments were done to compare proposed method and state-of-the-art methods. The results show that our method can estimate a better kernel and use less time than previous work, especially when the size of blur kernel is large.展开更多
Previous research has identified specific areas of frequent tropical cyclone activity in the North Atlantic basin. This study examines long-term and decadal spatio-temporal patterns of Atlantic tropical cyclone freque...Previous research has identified specific areas of frequent tropical cyclone activity in the North Atlantic basin. This study examines long-term and decadal spatio-temporal patterns of Atlantic tropical cyclone frequencies from 1944 to 2009, and analyzes categorical and decadal centroid patterns using kernel density estimation (KDE) and centrographic statistics. Results corroborate previous research which has suggested that the Bermuda-Azores anticyclone plays an integral role in the direction of tropical cyclone tracks. Other teleconnections such as the North Atlantic Oscillation (NAO) may also have an impact on tropical cyclone tracks, but at a different temporal resolution. Results expand on existing knowledge of the spatial trends of tropical cyclones based on storm category and time through the use of spatial statistics. Overall, location of peak frequency varies by tropical cyclone category, with stronger storms being more concentrated in narrow regions of the southern Caribbean Sea and Gulf of Mexico, while weaker storms occur in a much larger area that encompasses much of the Caribbean Sea, Gulf of Mexico, and Atlantic Ocean off of the east coast of the United States. Additionally, the decadal centroids of tropical cyclone tracks have oscillated over a large area of the Atlantic Ocean for much of recorded history. Data collected since 1944 can be analyzed confidently to reveal these patterns.展开更多
The state of charge(SOC)estimation of lithium-ion battery is an important function in the battery management system(BMS)of electric vehicles.The long short term memory(LSTM)model can be employed for SOC estimation,whi...The state of charge(SOC)estimation of lithium-ion battery is an important function in the battery management system(BMS)of electric vehicles.The long short term memory(LSTM)model can be employed for SOC estimation,which is capable of estimating the future changing states of a nonlinear system.Since the BMS usually works under complicated operating conditions,i.e the real measurement data used for model training may be corrupted by non-Gaussian noise,and thus the performance of the original LSTM with the mean square error(MSE)loss may deteriorate.Therefore,a novel LSTM with mixture kernel mean p-power error(MKMPE)loss,called MKMPE-LSTM,is developed by using the MKMPE loss to replace the MSE as the learning criterion in LSTM framework,which can achieve robust SOC estimation under the measurement data contaminated with non-Gaussian noises(or outliers)because of the MKMPE containing the p-order moments of the error distribution.In addition,a meta-heuristic algorithm,called heap-based-optimizer(HBO),is employed to optimize the hyper-parameters(mainly including learning rate,number of hidden layer neuron and value of p in MKMPE)of the proposed MKMPE-LSTM model to further improve its flexibility and generalization performance,and a novel hybrid model(HBO-MKMPE-LSTM)is established for SOC estimation under non-Gaussian noise cases.Finally,several tests are performed under various cases through a benchmark to evaluate the performance of the proposed HBO-MKMPE-LSTM model,and the results demonstrate that the proposed hybrid method can provide a good robustness and accuracy under different non-Gaussian measurement noises,and the SOC estimation results in terms of mean square error(MSE),root MSE(RMSE),mean absolute relative error(MARE),and determination coefficient R2are less than 0.05%,3%,3%,and above 99.8%at 25℃,respectively.展开更多
In order to improve the performance of the probability hypothesis density(PHD) algorithm based particle filter(PF) in terms of number estimation and states extraction of multiple targets, a new probability hypothesis ...In order to improve the performance of the probability hypothesis density(PHD) algorithm based particle filter(PF) in terms of number estimation and states extraction of multiple targets, a new probability hypothesis density filter algorithm based on marginalized particle and kernel density estimation is proposed, which utilizes the idea of marginalized particle filter to enhance the estimating performance of the PHD. The state variables are decomposed into linear and non-linear parts. The particle filter is adopted to predict and estimate the nonlinear states of multi-target after dimensionality reduction, while the Kalman filter is applied to estimate the linear parts under linear Gaussian condition. Embedding the information of the linear states into the estimated nonlinear states helps to reduce the estimating variance and improve the accuracy of target number estimation. The meanshift kernel density estimation, being of the inherent nature of searching peak value via an adaptive gradient ascent iteration, is introduced to cluster particles and extract target states, which is independent of the target number and can converge to the local peak position of the PHD distribution while avoiding the errors due to the inaccuracy in modeling and parameters estimation. Experiments show that the proposed algorithm can obtain higher tracking accuracy when using fewer sampling particles and is of lower computational complexity compared with the PF-PHD.展开更多
In this paper, we propose a new method that combines collage error in fractal domain and Hu moment invariants for image retrieval with a statistical method - variable bandwidth Kernel Density Estimation (KDE). The pro...In this paper, we propose a new method that combines collage error in fractal domain and Hu moment invariants for image retrieval with a statistical method - variable bandwidth Kernel Density Estimation (KDE). The proposed method is called CHK (KDE of Collage error and Hu moment) and it is tested on the Vistex texture database with 640 natural images. Experimental results show that the Average Retrieval Rate (ARR) can reach into 78.18%, which demonstrates that the proposed method performs better than the one with parameters respectively as well as the commonly used histogram method both on retrieval rate and retrieval time.展开更多
We primarily provide several estimates for the heat kernel defined on the 2-dimensional simple random walk. Additionally, we offer an estimate for the heat kernel on high-dimensional random walks, demonstrating that t...We primarily provide several estimates for the heat kernel defined on the 2-dimensional simple random walk. Additionally, we offer an estimate for the heat kernel on high-dimensional random walks, demonstrating that the heat kernel in higher dimensions converges rapidly. We also compute the constants involved in the estimate for the 1-dimensional heat kernel. Furthermore, we discuss the general case of on-diagonal estimates for the heat kernel.展开更多
A novel diversity-sampling based nonparametric multi-modal background model is proposed. Using the samples having more popular and various intensity values in the training sequence, a nonparametric model is built for ...A novel diversity-sampling based nonparametric multi-modal background model is proposed. Using the samples having more popular and various intensity values in the training sequence, a nonparametric model is built for background subtraction. According to the related intensifies, different weights are given to the distinct samples in kernel density estimation. This avoids repeated computation using all samples, and makes computation more efficient in the evaluation phase. Experimental results show the validity of the diversity- sampling scheme and robustness of the proposed model in moving objects segmentation. The proposed algorithm can be used in outdoor surveillance systems.展开更多
In this article, our proposed kernel estimator, named as Gumbel kernel, which broadened the class of non-negative, asymmetric kernel density estimators. Such kernel estimator can be used in nonparametric estimation of...In this article, our proposed kernel estimator, named as Gumbel kernel, which broadened the class of non-negative, asymmetric kernel density estimators. Such kernel estimator can be used in nonparametric estimation of the probability density function (</span><i><span style="font-family:Verdana;">pdf</span></i><span style="font-family:Verdana;">). When the density functions have limited bounded support on [0, ∞) and they are liberated of boundary bias, always non-negative and obtain the optimal rate of convergence for the mean integrated squared error (MISE). The bias, variance and the optimal bandwidth of the proposed estimators are investigated on theoretical grounds as well as on simulation basis. Further, the applicability of the proposed estimator is compared to Weibul</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">l</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> kernel estimator, where performance of newly proposed kernel is outstanding.展开更多
Logistic regression is often used to solve linear binary classification problems such as machine vision,speech recognition,and handwriting recognition.However,it usually fails to solve certain nonlinear multi-classifi...Logistic regression is often used to solve linear binary classification problems such as machine vision,speech recognition,and handwriting recognition.However,it usually fails to solve certain nonlinear multi-classification problem,such as problem with non-equilibrium samples.Many scholars have proposed some methods,such as neural network,least square support vector machine,AdaBoost meta-algorithm,etc.These methods essentially belong to machine learning categories.In this work,based on the probability theory and statistical principle,we propose an improved logistic regression algorithm based on kernel density estimation for solving nonlinear multi-classification.We have compared our approach with other methods using non-equilibrium samples,the results show that our approach guarantees sample integrity and achieves superior classification.展开更多
The study of estimation of conditional extreme quantile in incomplete data frameworks is of growing interest. Specially, the estimation of the extreme value index in a censorship framework has been the purpose of many...The study of estimation of conditional extreme quantile in incomplete data frameworks is of growing interest. Specially, the estimation of the extreme value index in a censorship framework has been the purpose of many inves<span style="font-family:Verdana;">tigations when finite dimension covariate information has been considered. In this paper, the estimation of the conditional extreme quantile of a </span><span style="font-family:Verdana;">heavy-tailed distribution is discussed when some functional random covariate (</span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> valued in some infinite-dimensional space) information is available and the scalar response variable is right-censored. A Weissman-type estimator of conditional extreme quantiles is proposed and its asymptotic normality is established under mild assumptions. A simulation study is conducted to assess the finite-sample behavior of the proposed estimator and a comparison with two simple estimations strategies is provided.</span>展开更多
There have been vast amount of studies on background modeling to detect moving objects. Two recent reviews[1,2] showed that kernel density estimation(KDE) method and Gaussian mixture model(GMM) perform about equally b...There have been vast amount of studies on background modeling to detect moving objects. Two recent reviews[1,2] showed that kernel density estimation(KDE) method and Gaussian mixture model(GMM) perform about equally best among possible background models. For KDE, the selection of kernel functions and their bandwidths greatly influence the performance. There were few attempts to compare the adequacy of functions for KDE. In this paper, we evaluate the performance of various functions for KDE. Functions tested include almost everyone cited in the literature and a new function, Laplacian of Gaussian(LoG) is also introduced for comparison. All tests were done on real videos with vary-ing background dynamics and results were analyzed both qualitatively and quantitatively. Effect of different bandwidths was also investigated.展开更多
One-class support vector machine (OCSVM) and support vector data description (SVDD) are two main domain-based one-class (kernel) classifiers. To reveal their relationship with density estimation in the case of t...One-class support vector machine (OCSVM) and support vector data description (SVDD) are two main domain-based one-class (kernel) classifiers. To reveal their relationship with density estimation in the case of the Gaussian kernel, OCSVM and SVDD are firstly unified into the framework of kernel density estimation, and the essential relationship between them is explicitly revealed. Then the result proves that the density estimation induced by OCSVM or SVDD is in agreement with the true density. Meanwhile, it can also reduce the integrated squared error (ISE). Finally, experiments on several simulated datasets verify the revealed relationships.展开更多
Let fn be a non-parametric kernel density estimator based on a kernel function K. and a sequence of independent and identically distributed random variables taking values in R. The goal of this article is to prove mod...Let fn be a non-parametric kernel density estimator based on a kernel function K. and a sequence of independent and identically distributed random variables taking values in R. The goal of this article is to prove moderate deviations and large deviations for the statistic sup |fn(x) - fn(-x) |.展开更多
As a production quality index of hematite grinding process,particle size(PS)is hard to be measured in real time.To achieve the PS estimation,this paper proposes a novel data driven model of PS using stochastic configu...As a production quality index of hematite grinding process,particle size(PS)is hard to be measured in real time.To achieve the PS estimation,this paper proposes a novel data driven model of PS using stochastic configuration network(SCN)with robust technique,namely,robust SCN(RSCN).Firstly,this paper proves the universal approximation property of RSCN with weighted least squares technique.Secondly,three robust algorithms are presented by employing M-estimation with Huber loss function,M-estimation with interquartile range(IQR)and nonparametric kernel density estimation(NKDE)function respectively to set the penalty weight.Comparison experiments are first carried out based on the UCI standard data sets to verify the effectiveness of these methods,and then the data-driven PS model based on the robust algorithms are established and verified.Experimental results show that the RSCN has an excellent performance for the PS estimation.展开更多
基金the financial support provided by the National Key Research and Development Program for Young Scientists(No.2021YFC2900400)Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(CPSF)(No.GZB20230914)+2 种基金National Natural Science Foundation of China(No.52304123)China Postdoctoral Science Foundation(No.2023M730412)Chongqing Outstanding Youth Science Foundation Program(No.CSTB2023NSCQ-JQX0027).
文摘Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust localization method that integrates kernel density estimation(KDE)with damping linear correction to enhance the precision of microseismic/acoustic emission(MS/AE)source positioning.Our approach systematically addresses abnormal arrival times through a three-step process:initial location by 4-arrival combinations,elimination of outliers based on three-dimensional KDE,and refinement using a linear correction with an adaptive damping factor.We validate our method through lead-breaking experiments,demonstrating over a 23%improvement in positioning accuracy with a maximum error of 9.12 mm(relative error of 15.80%)—outperforming 4 existing methods.Simulations under various system errors,outlier scales,and ratios substantiate our method’s superior performance.Field blasting experiments also confirm the practical applicability,with an average positioning error of 11.71 m(relative error of 7.59%),compared to 23.56,66.09,16.95,and 28.52 m for other methods.This research is significant as it enhances the robustness of MS/AE source localization when confronted with data anomalies.It also provides a practical solution for real-world engineering and safety monitoring applications.
文摘In real-world applications, datasets frequently contain outliers, which can hinder the generalization ability of machine learning models. Bayesian classifiers, a popular supervised learning method, rely on accurate probability density estimation for classifying continuous datasets. However, achieving precise density estimation with datasets containing outliers poses a significant challenge. This paper introduces a Bayesian classifier that utilizes optimized robust kernel density estimation to address this issue. Our proposed method enhances the accuracy of probability density distribution estimation by mitigating the impact of outliers on the training sample’s estimated distribution. Unlike the conventional kernel density estimator, our robust estimator can be seen as a weighted kernel mapping summary for each sample. This kernel mapping performs the inner product in the Hilbert space, allowing the kernel density estimation to be considered the average of the samples’ mapping in the Hilbert space using a reproducing kernel. M-estimation techniques are used to obtain accurate mean values and solve the weights. Meanwhile, complete cross-validation is used as the objective function to search for the optimal bandwidth, which impacts the estimator. The Harris Hawks Optimisation optimizes the objective function to improve the estimation accuracy. The experimental results show that it outperforms other optimization algorithms regarding convergence speed and objective function value during the bandwidth search. The optimal robust kernel density estimator achieves better fitness performance than the traditional kernel density estimator when the training data contains outliers. The Naïve Bayesian with optimal robust kernel density estimation improves the generalization in the classification with outliers.
文摘The application of frequency distribution statistics to data provides objective means to assess the nature of the data distribution and viability of numerical models that are used to visualize and interpret data.Two commonly used tools are the kernel density estimation and reduced chi-squared statistic used in combination with a weighted mean.Due to the wide applicability of these tools,we present a Java-based computer application called KDX to facilitate the visualization of data and the utilization of these numerical tools.
基金Projects(LQ16E080012,LY14F030012)supported by the Zhejiang Provincial Natural Science Foundation,ChinaProject(61573317)supported by the National Natural Science Foundation of ChinaProject(2015001)supported by the Open Fund for a Key-Key Discipline of Zhejiang University of Technology,China
文摘The accurate estimation of road traffic states can provide decision making for travelers and traffic managers. In this work,an algorithm based on kernel-k nearest neighbor(KNN) matching of road traffic spatial characteristics is presented to estimate road traffic states. Firstly, the representative road traffic state data were extracted to establish the reference sequences of road traffic running characteristics(RSRTRC). Secondly, the spatial road traffic state data sequence was selected and the kernel function was constructed, with which the spatial road traffic data sequence could be mapped into a high dimensional feature space. Thirdly, the referenced and current spatial road traffic data sequences were extracted and the Euclidean distances in the feature space between them were obtained. Finally, the road traffic states were estimated from weighted averages of the selected k road traffic states, which corresponded to the nearest Euclidean distances. Several typical links in Beijing were adopted for case studies. The final results of the experiments show that the accuracy of this algorithm for estimating speed and volume is 95.27% and 91.32% respectively, which prove that this road traffic states estimation approach based on kernel-KNN matching of road traffic spatial characteristics is feasible and can achieve a high accuracy.
基金supported by Science and Technology project of the State Grid Corporation of China“Research on Active Development Planning Technology and Comprehensive Benefit Analysis Method for Regional Smart Grid Comprehensive Demonstration Zone”National Natural Science Foundation of China(51607104)
文摘In the process of large-scale,grid-connected wind power operations,it is important to establish an accurate probability distribution model for wind farm fluctuations.In this study,a wind power fluctuation modeling method is proposed based on the method of moving average and adaptive nonparametric kernel density estimation(NPKDE)method.Firstly,the method of moving average is used to reduce the fluctuation of the sampling wind power component,and the probability characteristics of the modeling are then determined based on the NPKDE.Secondly,the model is improved adaptively,and is then solved by using constraint-order optimization.The simulation results show that this method has a better accuracy and applicability compared with the modeling method based on traditional parameter estimation,and solves the local adaptation problem of traditional NPKDE.
文摘In this paper, we define the Weibull kernel and use it to nonparametric estimation of the probability density function (pdf) and the hazard rate function for independent and identically distributed (iid) data. The bias, variance and the optimal bandwidth of the proposed estimator are investigated. Moreover, the asymptotic normality of the proposed estimator is investigated. The performance of the proposed estimator is tested using simulation study and real data.
文摘Single image motion deblurring has been a very challenging problem in the field of image processing. Although there are many researches had been proposed to solve this problem, it still has problems on kernel accuracy. In order to improve the kernel accuracy, an effective structure selection method was used to select the salient structure of the blur image. Then a novel kernel estimation method based on L0-2 norm was proposed. To guarantee the sparse kernel and eliminate the negative influence of details L0-norm was used. And L2-norm was used to ensure the continuity of kernel. Many experiments were done to compare proposed method and state-of-the-art methods. The results show that our method can estimate a better kernel and use less time than previous work, especially when the size of blur kernel is large.
文摘Previous research has identified specific areas of frequent tropical cyclone activity in the North Atlantic basin. This study examines long-term and decadal spatio-temporal patterns of Atlantic tropical cyclone frequencies from 1944 to 2009, and analyzes categorical and decadal centroid patterns using kernel density estimation (KDE) and centrographic statistics. Results corroborate previous research which has suggested that the Bermuda-Azores anticyclone plays an integral role in the direction of tropical cyclone tracks. Other teleconnections such as the North Atlantic Oscillation (NAO) may also have an impact on tropical cyclone tracks, but at a different temporal resolution. Results expand on existing knowledge of the spatial trends of tropical cyclones based on storm category and time through the use of spatial statistics. Overall, location of peak frequency varies by tropical cyclone category, with stronger storms being more concentrated in narrow regions of the southern Caribbean Sea and Gulf of Mexico, while weaker storms occur in a much larger area that encompasses much of the Caribbean Sea, Gulf of Mexico, and Atlantic Ocean off of the east coast of the United States. Additionally, the decadal centroids of tropical cyclone tracks have oscillated over a large area of the Atlantic Ocean for much of recorded history. Data collected since 1944 can be analyzed confidently to reveal these patterns.
基金supported by the National Key R.D Program of China(2021YFB2401904)the Joint Fund project of the National Natural Science Foundation of China(U21A20485)+1 种基金the National Natural Science Foundation of China(61976175)the Key Laboratory Project of Shaanxi Provincial Education Department Scientific Research Projects(20JS109)。
文摘The state of charge(SOC)estimation of lithium-ion battery is an important function in the battery management system(BMS)of electric vehicles.The long short term memory(LSTM)model can be employed for SOC estimation,which is capable of estimating the future changing states of a nonlinear system.Since the BMS usually works under complicated operating conditions,i.e the real measurement data used for model training may be corrupted by non-Gaussian noise,and thus the performance of the original LSTM with the mean square error(MSE)loss may deteriorate.Therefore,a novel LSTM with mixture kernel mean p-power error(MKMPE)loss,called MKMPE-LSTM,is developed by using the MKMPE loss to replace the MSE as the learning criterion in LSTM framework,which can achieve robust SOC estimation under the measurement data contaminated with non-Gaussian noises(or outliers)because of the MKMPE containing the p-order moments of the error distribution.In addition,a meta-heuristic algorithm,called heap-based-optimizer(HBO),is employed to optimize the hyper-parameters(mainly including learning rate,number of hidden layer neuron and value of p in MKMPE)of the proposed MKMPE-LSTM model to further improve its flexibility and generalization performance,and a novel hybrid model(HBO-MKMPE-LSTM)is established for SOC estimation under non-Gaussian noise cases.Finally,several tests are performed under various cases through a benchmark to evaluate the performance of the proposed HBO-MKMPE-LSTM model,and the results demonstrate that the proposed hybrid method can provide a good robustness and accuracy under different non-Gaussian measurement noises,and the SOC estimation results in terms of mean square error(MSE),root MSE(RMSE),mean absolute relative error(MARE),and determination coefficient R2are less than 0.05%,3%,3%,and above 99.8%at 25℃,respectively.
基金Project(61101185) supported by the National Natural Science Foundation of ChinaProject(2011AA1221) supported by the National High Technology Research and Development Program of China
文摘In order to improve the performance of the probability hypothesis density(PHD) algorithm based particle filter(PF) in terms of number estimation and states extraction of multiple targets, a new probability hypothesis density filter algorithm based on marginalized particle and kernel density estimation is proposed, which utilizes the idea of marginalized particle filter to enhance the estimating performance of the PHD. The state variables are decomposed into linear and non-linear parts. The particle filter is adopted to predict and estimate the nonlinear states of multi-target after dimensionality reduction, while the Kalman filter is applied to estimate the linear parts under linear Gaussian condition. Embedding the information of the linear states into the estimated nonlinear states helps to reduce the estimating variance and improve the accuracy of target number estimation. The meanshift kernel density estimation, being of the inherent nature of searching peak value via an adaptive gradient ascent iteration, is introduced to cluster particles and extract target states, which is independent of the target number and can converge to the local peak position of the PHD distribution while avoiding the errors due to the inaccuracy in modeling and parameters estimation. Experiments show that the proposed algorithm can obtain higher tracking accuracy when using fewer sampling particles and is of lower computational complexity compared with the PF-PHD.
基金Supported by the Fundamental Research Funds for the Central Universities (No. NS2012093)
文摘In this paper, we propose a new method that combines collage error in fractal domain and Hu moment invariants for image retrieval with a statistical method - variable bandwidth Kernel Density Estimation (KDE). The proposed method is called CHK (KDE of Collage error and Hu moment) and it is tested on the Vistex texture database with 640 natural images. Experimental results show that the Average Retrieval Rate (ARR) can reach into 78.18%, which demonstrates that the proposed method performs better than the one with parameters respectively as well as the commonly used histogram method both on retrieval rate and retrieval time.
文摘We primarily provide several estimates for the heat kernel defined on the 2-dimensional simple random walk. Additionally, we offer an estimate for the heat kernel on high-dimensional random walks, demonstrating that the heat kernel in higher dimensions converges rapidly. We also compute the constants involved in the estimate for the 1-dimensional heat kernel. Furthermore, we discuss the general case of on-diagonal estimates for the heat kernel.
基金Project supported by National Basic Research Program of Chinaon Urban Traffic Monitoring and Management System(Grant No .TG1998030408)
文摘A novel diversity-sampling based nonparametric multi-modal background model is proposed. Using the samples having more popular and various intensity values in the training sequence, a nonparametric model is built for background subtraction. According to the related intensifies, different weights are given to the distinct samples in kernel density estimation. This avoids repeated computation using all samples, and makes computation more efficient in the evaluation phase. Experimental results show the validity of the diversity- sampling scheme and robustness of the proposed model in moving objects segmentation. The proposed algorithm can be used in outdoor surveillance systems.
文摘In this article, our proposed kernel estimator, named as Gumbel kernel, which broadened the class of non-negative, asymmetric kernel density estimators. Such kernel estimator can be used in nonparametric estimation of the probability density function (</span><i><span style="font-family:Verdana;">pdf</span></i><span style="font-family:Verdana;">). When the density functions have limited bounded support on [0, ∞) and they are liberated of boundary bias, always non-negative and obtain the optimal rate of convergence for the mean integrated squared error (MISE). The bias, variance and the optimal bandwidth of the proposed estimators are investigated on theoretical grounds as well as on simulation basis. Further, the applicability of the proposed estimator is compared to Weibul</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">l</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> kernel estimator, where performance of newly proposed kernel is outstanding.
基金The authors would like to thank all anonymous reviewers for their suggestions and feedback.This work was supported by National Natural Science Foundation of China(Grant No.61379103).
文摘Logistic regression is often used to solve linear binary classification problems such as machine vision,speech recognition,and handwriting recognition.However,it usually fails to solve certain nonlinear multi-classification problem,such as problem with non-equilibrium samples.Many scholars have proposed some methods,such as neural network,least square support vector machine,AdaBoost meta-algorithm,etc.These methods essentially belong to machine learning categories.In this work,based on the probability theory and statistical principle,we propose an improved logistic regression algorithm based on kernel density estimation for solving nonlinear multi-classification.We have compared our approach with other methods using non-equilibrium samples,the results show that our approach guarantees sample integrity and achieves superior classification.
文摘The study of estimation of conditional extreme quantile in incomplete data frameworks is of growing interest. Specially, the estimation of the extreme value index in a censorship framework has been the purpose of many inves<span style="font-family:Verdana;">tigations when finite dimension covariate information has been considered. In this paper, the estimation of the conditional extreme quantile of a </span><span style="font-family:Verdana;">heavy-tailed distribution is discussed when some functional random covariate (</span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> valued in some infinite-dimensional space) information is available and the scalar response variable is right-censored. A Weissman-type estimator of conditional extreme quantiles is proposed and its asymptotic normality is established under mild assumptions. A simulation study is conducted to assess the finite-sample behavior of the proposed estimator and a comparison with two simple estimations strategies is provided.</span>
文摘There have been vast amount of studies on background modeling to detect moving objects. Two recent reviews[1,2] showed that kernel density estimation(KDE) method and Gaussian mixture model(GMM) perform about equally best among possible background models. For KDE, the selection of kernel functions and their bandwidths greatly influence the performance. There were few attempts to compare the adequacy of functions for KDE. In this paper, we evaluate the performance of various functions for KDE. Functions tested include almost everyone cited in the literature and a new function, Laplacian of Gaussian(LoG) is also introduced for comparison. All tests were done on real videos with vary-ing background dynamics and results were analyzed both qualitatively and quantitatively. Effect of different bandwidths was also investigated.
基金Supported by the National Natural Science Foundation of China(60603029)the Natural Science Foundation of Jiangsu Province(BK2007074)the Natural Science Foundation for Colleges and Universities in Jiangsu Province(06KJB520132)~~
文摘One-class support vector machine (OCSVM) and support vector data description (SVDD) are two main domain-based one-class (kernel) classifiers. To reveal their relationship with density estimation in the case of the Gaussian kernel, OCSVM and SVDD are firstly unified into the framework of kernel density estimation, and the essential relationship between them is explicitly revealed. Then the result proves that the density estimation induced by OCSVM or SVDD is in agreement with the true density. Meanwhile, it can also reduce the integrated squared error (ISE). Finally, experiments on several simulated datasets verify the revealed relationships.
基金Research supported by the National Natural Science Foundation of China (10271091)
文摘Let fn be a non-parametric kernel density estimator based on a kernel function K. and a sequence of independent and identically distributed random variables taking values in R. The goal of this article is to prove moderate deviations and large deviations for the statistic sup |fn(x) - fn(-x) |.
基金Projects(61603393,61741318)supported in part by the National Natural Science Foundation of ChinaProject(BK20160275)supported by the Natural Science Foundation of Jiangsu Province,China+1 种基金Project(2015M581885)supported by the Postdoctoral Science Foundation of ChinaProject(PAL-N201706)supported by the Open Project Foundation of State Key Laboratory of Synthetical Automation for Process Industries of Northeastern University,China
文摘As a production quality index of hematite grinding process,particle size(PS)is hard to be measured in real time.To achieve the PS estimation,this paper proposes a novel data driven model of PS using stochastic configuration network(SCN)with robust technique,namely,robust SCN(RSCN).Firstly,this paper proves the universal approximation property of RSCN with weighted least squares technique.Secondly,three robust algorithms are presented by employing M-estimation with Huber loss function,M-estimation with interquartile range(IQR)and nonparametric kernel density estimation(NKDE)function respectively to set the penalty weight.Comparison experiments are first carried out based on the UCI standard data sets to verify the effectiveness of these methods,and then the data-driven PS model based on the robust algorithms are established and verified.Experimental results show that the RSCN has an excellent performance for the PS estimation.