针对油浸式变压器2维流-热耦合仿真计算效率低的问题,提出了基于混合有限元法的并行计算方法。首先,在Visual Studio 2019中采用C++语言实现无量纲最小二乘有限元法以及迎风有限元法的串行计算方法。然后,基于图形处理器(graphic proces...针对油浸式变压器2维流-热耦合仿真计算效率低的问题,提出了基于混合有限元法的并行计算方法。首先,在Visual Studio 2019中采用C++语言实现无量纲最小二乘有限元法以及迎风有限元法的串行计算方法。然后,基于图形处理器(graphic processing unit,GPU)实现流体场的并行计算,针对单分区分匝模型对比分析了不同GPU卡在不同网格条件下的并行计算效率,分析结果表明数据规模越大,GPU卡流处理器越多并行效果越好。其次,基于Intel MKL(Intel math kernel library)函数库结合共享存储并行编程(open multi-processing,OpenMP)实现了2维温度场的并行计算,并对比分析了不同网格数量对并行效率的影响。最后,在此基础上提出了根据不同仿真条件的混合并行计算方法,并应用到大型油浸式变压器绕组模型的2维温升热点分析中。结果表明,相较于串行程序,混合有限元并行计算方法的加速比达到了69.5,实验测试结果进一步验证了并行计算结果的准确性,研究成果为大型油浸式变压器流-热耦合问题的快速计算奠定了基础。展开更多
文摘针对油浸式变压器2维流-热耦合仿真计算效率低的问题,提出了基于混合有限元法的并行计算方法。首先,在Visual Studio 2019中采用C++语言实现无量纲最小二乘有限元法以及迎风有限元法的串行计算方法。然后,基于图形处理器(graphic processing unit,GPU)实现流体场的并行计算,针对单分区分匝模型对比分析了不同GPU卡在不同网格条件下的并行计算效率,分析结果表明数据规模越大,GPU卡流处理器越多并行效果越好。其次,基于Intel MKL(Intel math kernel library)函数库结合共享存储并行编程(open multi-processing,OpenMP)实现了2维温度场的并行计算,并对比分析了不同网格数量对并行效率的影响。最后,在此基础上提出了根据不同仿真条件的混合并行计算方法,并应用到大型油浸式变压器绕组模型的2维温升热点分析中。结果表明,相较于串行程序,混合有限元并行计算方法的加速比达到了69.5,实验测试结果进一步验证了并行计算结果的准确性,研究成果为大型油浸式变压器流-热耦合问题的快速计算奠定了基础。