This paper explores the integration of simulation technology in Engineering Mechanics(EM)teaching in vocational colleges.A case study was conducted using the tensile test as an example,and digital resources,such as co...This paper explores the integration of simulation technology in Engineering Mechanics(EM)teaching in vocational colleges.A case study was conducted using the tensile test as an example,and digital resources,such as colored Mises stress nephograms,were obtained.These resources were integrated into the original curriculum to conduct teaching experiments.The results show that the use of digital resources significantly improved the quality of teaching in EM.The integration of simulation technology in EM teaching provides a promising direction for the improvement of vocational education and the cultivation of high-quality skilled talents.The development and application of more simulation-based teaching cases should be studied by scholars.展开更多
Virtual simulation experiment,as a new way to promote the digital transformation of education,has a broad development prospect and application value.The civil engineering experimental volume and space are huge,it has ...Virtual simulation experiment,as a new way to promote the digital transformation of education,has a broad development prospect and application value.The civil engineering experimental volume and space are huge,it has a long construction period,is highly dangerous,and is difficult to experiment with.In order to solve the contradiction between the traditional theory teaching of civil engineering and the engineering training of students,the construction of virtual simulation experimental teaching courses with a high degree of realism,intuition,and accuracy can be used as a useful supplement and innovation of experimental and practical teaching.This paper takes the virtual simulation experimental teaching course of urban overpasses as an example,introduces the necessity and practicability of the course construction,and describes the experimental principle structure of the course,the simulation scene design,the experimental teaching process,the experimental method,etc.The course has achieved good application results,and it has been recognized as the first-class virtual simulation teaching course of the Chongqing Municipal Government,which provides certain references to the construction of the same type of courses in the civil engineering profession.展开更多
Piles in a group experience additional displacements in soil due to pile-to-pile interactions apart from those resulting from the external loading.The effect of these interactions determined assuming soil as an elasti...Piles in a group experience additional displacements in soil due to pile-to-pile interactions apart from those resulting from the external loading.The effect of these interactions determined assuming soil as an elastic and/or viscoelastic material on pile head impedance functions of the pile group is studied by relating the group stiffness to the static stiffness of a single pile.However,the prevailing elastic solutions may misestimate the resulting pile group response due to the lack of consideration for either soil(material)and/or soil-pile interface nonlinearities.It is well established that soil behaves nonlinearly under moderate-to-high loading amplitudes,and besides,the soil-pile interface nonlinearity can exist even at small loading amplitudes.This study addresses the effects of these nonlinearities on the vertical impedance functions of a 3×3-pile group using numerical methods by direct analyses and superposition using pile-to-pile interaction factors.The numerical results are validated using scaled model tests under 1 g conditions.The results highlight the overestimation of pile-to-pile interactions in the pile group when assuming elastic soil conditions.The cases either by direct analyses or superposition approach involving soil and soil-pile interface nonlinearities agree well with the experimental pile group responses under close-to-elastic and nonlinear conditions.展开更多
An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effe...An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effects of multi-component gas on the properties and components of tight oil are studied. First, the core displacement experiments using the CH_(4)/CO_(2) multi-component gas are conducted to determine the oil displacement efficiency under different CO_(2) and CH_(4) ratios. Then, a viscometer and a liquid density balance are used to investigate the change characteristics of oil viscosity and density after multi-component gas displacement with different CO_(2) and CH_(4) ratios. In addition, a laboratory scale numerical model is established to validate the experimental results. Finally, a composition model of multi-stage fractured horizontal well in tight oil reservoir considering nano-confinement effects is established to investigate the effects of multi-component gas on the components of produced dead oil and formation crude oil. The experimental results show that the oil displacement efficiency of multi-component gas displacement is greater than that of single-component gas displacement. The CH_(4) decreases the viscosity and density of light oil, while CO_(2) decreases the viscosity but increases the density. And the numerical simulation results show that CO_(2) extracts more heavy components from the liquid phase into the vapor phase, while CH_(4) extracts more light components from the liquid phase into the vapor phase during cyclic gas injection. The multi-component gas can extract both the light components and the heavy components from oil, and the balanced production of each component can be achieved by using multi-component gas huff-puff.展开更多
As critical measures to educate and cultivate people’s morality,“Ideology and Politics of Course”has gradually become the focus in actual undergraduate education research in universities.Targeting the single ideolo...As critical measures to educate and cultivate people’s morality,“Ideology and Politics of Course”has gradually become the focus in actual undergraduate education research in universities.Targeting the single ideological and political education mode and students’lack of interest in experimental courses,this paper,through various links,including pre-class preview,in-class teaching,and after-class data analysis,takes the common emitter single tube amplifier experiment as an example to organically integrate the excavated ideological and political elements with practical operation and carry out teaching case design and practice;realize the improvement of students’learning initiative and problem-analysis ability;and achieve the purpose of cultivating people throughout the whole process and in a comprehensive direction.展开更多
Photocatalysis,a critical strategy for harvesting sunlight to address energy demand and environmental concerns,is underpinned by the discovery of high-performance photocatalysts,thereby how to design photocatalysts is...Photocatalysis,a critical strategy for harvesting sunlight to address energy demand and environmental concerns,is underpinned by the discovery of high-performance photocatalysts,thereby how to design photocatalysts is now generating widespread interest in boosting the conversion effi-ciency of solar energy.In the past decade,computational technologies and theoretical simulations have led to a major leap in the development of high-throughput computational screening strategies for novel high-efficiency photocatalysts.In this viewpoint,we started with introducing the challenges of photocatalysis from the view of experimental practice,especially the inefficiency of the traditional“trial and error”method.Sub-sequently,a cross-sectional comparison between experimental and high-throughput computational screening for photocatalysis is presented and discussed in detail.On the basis of the current experimental progress in photocatalysis,we also exemplified the various challenges associated with high-throughput computational screening strategies.Finally,we offered a preferred high-throughput computational screening procedure for pho-tocatalysts from an experimental practice perspective(model construction and screening,standardized experiments,assessment and revision),with the aim of a better correlation of high-throughput simulations and experimental practices,motivating to search for better descriptors.展开更多
This study focuses on variations in the hysteretic behavior of buckling-restrained braces(BRBs)configured with or without out-of-plane eccentricity under cyclic loading.Quasi-static experiments and numerical simulatio...This study focuses on variations in the hysteretic behavior of buckling-restrained braces(BRBs)configured with or without out-of-plane eccentricity under cyclic loading.Quasi-static experiments and numerical simulations were carried out on concentrically and eccentrically loaded BRB specimens to investigate the mechanical properties,energy dissipation performance,stress distribution,and high-order deformation pattern.The experimental and numerical results showed that compared to the concentrically loaded BRBs,the stiffness,yield force,cumulated plastic ductility(CPD)coefficient,equivalent viscous damping coefficient and energy dissipation decreased,and the yield displacement and compression strength adjustment factor increased for the eccentrically loaded BRBs.With the existence of the out-of-plane eccentricity,the initial yield position changes from the yield segment to the junction between the yield segment and transition segment under a tensile load,while the initial high-order buckling pattern changes from a first-order C-shape to a secondorder S-shape under a compressive load.展开更多
Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks th...Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks through to the wellbore. Autonomous inflow control device(AICD) is an important instrument maintain normal production after bottom water coning, however, the resistance increasing ability of the swirl type AICD is insufficient at present, which seriously affects the water control effect. Aiming this problem, this paper designs a multi-stage resistance-increasing and composite type AICD. The separation mechanism of oil-water two phases in this structure, the resistance form of oil-water single phase and the resistance-increasing principle of water phase are analyzed. Establishing the dual-phase multi-stage separation and resistance-increasing model, and verified by measuring the throttling pressure drop and oil-water volume fraction of the AICD, it is found that the composite type AICD has the effect of ICD and AICD at the same time, which can balance the production rate of each well section at the initial stage of production, delay the occurrence of bottom water coning. In the middle and later stages of production, water-blocking can be effectively increased to achieve water control and stable production.After structural sensitivity analysis, the influence law of various structural parameters on the water control performance of composite AICD was obtained. The simulation calculation results show that,compared with the existing swirl type AICD, composite AICD has higher sensitivity to moisture content,the water phase throttling pressure drop is increased by 4.5 times on average. The composite AICD is suitable for the entire stage of horizontal well production.展开更多
Corrosion leakages often occur in the air cooler of a hydrocracking unit,with the failure sites mainly located in the entrance area of the tubes.An analysis of the macroscopic morphology and corrosion products confirm...Corrosion leakages often occur in the air cooler of a hydrocracking unit,with the failure sites mainly located in the entrance area of the tubes.An analysis of the macroscopic morphology and corrosion products confirmed that the damage was caused by erosion-corrosion(E-C).Numerical and experimental methods were applied to investigate the E-C mechanism in the air cooler.Computational fluid dynamics(CFD)was used to calculate the hydrodynamic parameters of the air cooler.The results showed that there was a biased flow in the air cooler,which led to a significant increase in velocity,turbulent kinetic energy and wall shear within 0.2 m of the tube entrance.A visualization experiment was then performed to determine the principles of migration and transformation of multiphase flow in the air cooler tubes.Various flow patterns(pure droplet flow,mist flow,and annular flow)and their evolutionary processes were clearly depicted experimentally.The initiation mechanism and processes leading to the development of E-C in the air cooler were also determined.This study provided a comprehensive explanation for the E-C failures that occur in air coolers during operation.展开更多
The atmospheric carbon dioxide(CO_(2))concentration has been increasing rapidly since the Industrial Revolution,which has led to unequivocal global warming and crucial environmental change.It is extremely important to...The atmospheric carbon dioxide(CO_(2))concentration has been increasing rapidly since the Industrial Revolution,which has led to unequivocal global warming and crucial environmental change.It is extremely important to investigate the interactions among atmospheric CO_(2),the physical climate system,and the carbon cycle of the underlying surface for a better understanding of the Earth system.Earth system models are widely used to investigate these interactions via coupled carbon-climate simulations.The Chinese Academy of Sciences Earth System Model version 2(CAS-ESM2.0)has successfully fixed a two-way coupling of atmospheric CO_(2)with the climate and carbon cycle on land and in the ocean.Using CAS-ESM2.0,we conducted a coupled carbon-climate simulation by following the CMIP6 proposal of a historical emissions-driven experiment.This paper examines the modeled CO_(2)by comparison with observed CO_(2)at the sites of Mauna Loa and Barrow,and the Greenhouse Gases Observing Satellite(GOSAT)CO_(2)product.The results showed that CAS-ESM2.0 agrees very well with observations in reproducing the increasing trend of annual CO_(2)during the period 1850-2014,and in capturing the seasonal cycle of CO_(2)at the two baseline sites,as well as over northern high latitudes.These agreements illustrate a good ability of CAS-ESM2.0 in simulating carbon-climate interactions,even though uncertainties remain in the processes involved.This paper reports an important stage of the development of CAS-ESM with the coupling of carbon and climate,which will provide significant scientific support for climate research and China’s goal of carbon neutrality.展开更多
Background Most existing chemical experiment teaching systems lack solid immersive experiences,making it difficult to engage students.To address these challenges,we propose a chemical simulation teaching system based ...Background Most existing chemical experiment teaching systems lack solid immersive experiences,making it difficult to engage students.To address these challenges,we propose a chemical simulation teaching system based on virtual reality and gesture interaction.Methods The parameters of the models were obtained through actual investigation,whereby Blender and 3DS MAX were used to model and import these parameters into a physics engine.By establishing an interface for the physics engine,gesture interaction hardware,and virtual reality(VR)helmet,a highly realistic chemical experiment environment was created.Using code script logic,particle systems,as well as other systems,chemical phenomena were simulated.Furthermore,we created an online teaching platform using streaming media and databases to address the problems of distance teaching.Results The proposed system was evaluated against two mainstream products in the market.In the experiments,the proposed system outperformed the other products in terms of fidelity and practicality.Conclusions The proposed system which offers realistic simulations and practicability,can help improve the high school chemistry experimental education.展开更多
The flow field around a spur dike has three-dimensional characteristics. In order to analyze the influence of the flow field on pollutant transport, based on a compressive volume of fluid (VOF) scheme, the three-dim...The flow field around a spur dike has three-dimensional characteristics. In order to analyze the influence of the flow field on pollutant transport, based on a compressive volume of fluid (VOF) scheme, the three-dimensional transient compressive pollutant transport model (CPTM) and the cubic equation (CE) bounded differencing scheme were developed. For the calibration and validation of CPTM, laboratory experiments were carried out in a flume with a non-submerged spur dike. The spur dike was angled at 60°, 90°, and 120° from the upstream direction. The simulation results agreed with the experimental results. The simulations and experiments showed that the distribution of pollutant concentration was determined by circumfluence and the main flow. Concentration decay in the circumfluenee zone was slower than that in the main flow. Downstream of the spur dike, the concentration fluctuation became intensive with the increase of spur dike angle.展开更多
In order to improve our understanding of rock fracture and fault instability driven by high-pressure fluid sources, the authors carried out rock fracture tests using granite under a confining pressure of 80 MPa with f...In order to improve our understanding of rock fracture and fault instability driven by high-pressure fluid sources, the authors carried out rock fracture tests using granite under a confining pressure of 80 MPa with fluid injection in the laboratory. Furthermore, we tested a number of numerical models using the FLAC;modeling software to find the best model to represent the experimental results. The high-speed multichannel acoustic emission(AE) waveform recording system used in this study made it possible to examine the total fracture process through detailed monitoring of AE hypocenters and seismic velocity.The experimental results show that injecting high-pressure oil into the rock sample can induce AE activity at very low stress levels and can dramatically reduce the strength of the rock. The results of the numerical simulations show that major experimental results, including the strength, the temporal and spatial patterns of the AE events, and the role of the fluid can be represented fairly well by a model involving(1) randomly distributed defect elements to model pre-existing cracks,(2) random modification of rock properties to represent inhomogeneity introduced by different mineral grains, and(3)macroscopic inhomogeneity. Our study, which incorporates laboratory experiments and numerical simulations, indicates that such an approach is helpful in finding a better model not only for simulating experimental results but also for upscaling purposes.展开更多
A mathematical hydraulic support self-tracking model for three-machine cooperative mining is proposed to address low efficiency and difficulties in strategy evaluation of a fully mechanized coal face.The proposed mode...A mathematical hydraulic support self-tracking model for three-machine cooperative mining is proposed to address low efficiency and difficulties in strategy evaluation of a fully mechanized coal face.The proposed model uses the coordinates and traction speed of the shearer to calculate the frequency of the circular hydraulic support and realize the coordinated operation of the three-machine mining technology.A unity3d hardware-in-the-loop simulation experimental hearer and hydraulic support platform was used to validate the model of autonomous follow-up.The results indicate that collaborative control of coal mining allowed for an efficiency 3.76%higher than under automatic operation mode and 46.03%higher than under manual control;thus,The mathematical model provided an improved production efficiency of the fully mechanized mining face.The mathematical model also provides a more intelligent and reliable security support,and improves the intelligent level of hydraulic support follow-up control.展开更多
Sesquiterpanes are ubiquitous components of crude oils and ancient sediments.Liquid saturated hydrocarbons from simulated pyrolysis experiments on immature organic-rich mudstone collected from the Lower Cretaceous Hes...Sesquiterpanes are ubiquitous components of crude oils and ancient sediments.Liquid saturated hydrocarbons from simulated pyrolysis experiments on immature organic-rich mudstone collected from the Lower Cretaceous Hesigewula Sag were analyzed by gas chromatography-mass spectrometry(GC-MS).C14 bicyclic sesquiterpanes,namely,8β(H)-drimane,8β(H)-homodrimane,and 8 a(H)-homodrimane were detected and identified on basis of their diagnostic fragment ions(m/z123,179,193,and 207),and previously published mass spectra data,and these bicyclic sesquiterpanes presented relatively regular characteristics in their thermal evolution.The ratios 8β(H)-drimane/8β(H)-homodrimane,8β(H)-homodrimane/8 a(H)-homodrimane,and 8β(H)-drimane/8 a(H)-homodrimane all show a clear upward trend with increasing temperature below the temperature turning point.Thus,all these ratios can be used as evolution indexes of source rocks in the immature-lowmaturity stage.However,the last two ratios may be more suitable than the first ratio as valid parameters for measuring the extent of thermal evolution of organic matter in the immature-low-maturity stage because their change amplitude with increasing temperature is more obvious.展开更多
A planar passive walking model with straight legs and round feet was discussed. This model can walk down steps, both on stairs with even steps and with random steps. Simulations showed that models with small moments o...A planar passive walking model with straight legs and round feet was discussed. This model can walk down steps, both on stairs with even steps and with random steps. Simulations showed that models with small moments of inertia can navigate large height steps. Period-doubling has been observed when the space between steps grows. This period-doubling has been validated by experiments, and the results of experiments were coincident with the simulation.展开更多
In modem manufacturing, a new type of sheet metal part with step cross-section in both inner hole and outer edge is proposed. The traditional stamping separating processes can only produce sheet metal part with vertic...In modem manufacturing, a new type of sheet metal part with step cross-section in both inner hole and outer edge is proposed. The traditional stamping separating processes can only produce sheet metal part with vertical cross-section. According to the latest developing theory and potential of cold pressure forming: combination of pressure and cold forging, a new flow control forming of sheet metal(FCF) is excogitated based on blanking process of general stamping and combined with cold forging processes such as extrusion and coining, etc, which is aiming at the above-mentioned new type of sheet metal part. With utilization of this new process, the new type of sheet metal parts can be manufactured. In order to shorten the testing period, the numerical simulation was carried out by using DEFORM-3D software, and both deformation and mechanics rules were analyzed. Based on the simulation, both punching part and blanked parts of this new type were successfully developed. Then a new conception of optimal distance between the step walls of inner hole and outside edge was proposed and the design principle for its numerical value was inferred. Furthermore, a mold set for combination of stamping & cold forging was designed and manufactured, by which the technologic experiments were taken for validation with Aluminum plate of thickness 2.35 mm for power battery cover board, which verified the principle of the distance between the step walls. The research of cold pressure forming of thin sheet metal with step cross-section is significant, not only to the development of modem mechanical manufacture, but also to metal plastic forming science.展开更多
In order to obtain the reasonable operating conditions and minimize the power consumption in the stirred bioreactor, the hydrodynamic experiments in the stirred bioreactor have been taken to obtain the basic data. Sub...In order to obtain the reasonable operating conditions and minimize the power consumption in the stirred bioreactor, the hydrodynamic experiments in the stirred bioreactor have been taken to obtain the basic data. Subsequently, an Eulerian model for the gas–liquid–solid three phase flow in the stirred bioreactor has been proposed and the CFD simulation has been conducted. By comparing the results of experiment and simulation, it can be concluded that the simulation results were consistent with the experimental data. The inner relationship between operating variables and indicators could be obtained by comparing the results of just suspension speed, gas holdup, power consumption and operational maps, further the reasonable operating conditions could be also determined under the minimum power consumption. The operational maps could provide the theoretical foundation for industrial application of the gas–liquid–solid stirred bioreactors under the low solid concentration(no more than 20 wt%).展开更多
For capturing and recycling of CO2 in the internal combustion engine, Rankle cycle engine can reduce the exhaust pollutants effectively under the condition of ensuring the engine thermal efficiency by using the techni...For capturing and recycling of CO2 in the internal combustion engine, Rankle cycle engine can reduce the exhaust pollutants effectively under the condition of ensuring the engine thermal efficiency by using the techniques of spraying water in the cylinder and optimizing the ignition advance angle. However, due to the water spray nozzle need to be installed on the cylinder, which increases the cylinder head design difficulty and makes the combustion conditions become more complicated. In this paper, a new method is presented to carry out the closing inlet and exhaust system for internal combustion engines. The proposed new method uses liquid oxygen to solidify part of cooled CO2 from exhaust system into dry ice and the liquid oxygen turns into gas oxygen which is sent to inlet system. The other part of CO2 is sent to inlet system and mixed with oxygen, which can reduce the oxygen-enriched combustion detonation tendency and make combustion stable. Computing grid of the IP52FMI single-cylinder four-stroke gasoline-engine is established according to the actual shape of the combustion chamber using KIVA-3V program. The effects of exhaust gas recirculation (EGR) rate are analyzed on the temperatures, the pressures and the instantaneous heat release rates when the EGR rate is more than 8%. The possibility of enclosing intake and exhaust system for engine is verified. The carbon dioxide trapping device is designed and the IP52FMI engine is transformed and the CO2 capture experiment is carried out. The experimental results show that when the EGR rate is 36% for the optimum EGR rate. When the liquid oxygen of 35.80-437.40 g is imported into the device and last 1-20 min, respectively, 21.50-701.30 g dry ice is obtained. This research proposes a new design method which can capture CO2 for vehicular internal combustion engine.展开更多
A mobile robot developed by Wuhan University for full-path hotline inspection on 220 kV transmission lines was presented. With 4 rotating joints and 2 translational ones, such robot is capable of traveling along non- ...A mobile robot developed by Wuhan University for full-path hotline inspection on 220 kV transmission lines was presented. With 4 rotating joints and 2 translational ones, such robot is capable of traveling along non- obstaclestraight-line segment and surmounting straight-line segment obstacles as well as transferring between two spans automatically. Lagrange’s equations were utilized to derive dynamic equations of all the links, including items of inertia, coupling inertia, Coriolis acceleration, centripetal acceleration and gravity. And a dynamic response experiment on elemental motions of robot prototype’s travelling along non-obstacle straight-line segment and surmounting obstacles was performed on 220 kV 1∶1 simulative overhanging transmission-line in laboratory. In addition, dynamic numerical simulation was conducted in the corresponding condition. Comparison and analysis on results of experiment and numerical simulation have validated theoretical model and simulation resolution. Therefore, the dynamic model formed hereunder can be used for the study of robot control.展开更多
基金Science and Technology Key Project of Beijing Polytechnic(Project number:2024X008-KXZ)。
文摘This paper explores the integration of simulation technology in Engineering Mechanics(EM)teaching in vocational colleges.A case study was conducted using the tensile test as an example,and digital resources,such as colored Mises stress nephograms,were obtained.These resources were integrated into the original curriculum to conduct teaching experiments.The results show that the use of digital resources significantly improved the quality of teaching in EM.The integration of simulation technology in EM teaching provides a promising direction for the improvement of vocational education and the cultivation of high-quality skilled talents.The development and application of more simulation-based teaching cases should be studied by scholars.
基金Chongqing Institute of Technology’s 2022 Virtual Simulation Experiment“Golden Course”Construction Project“Virtual Simulation Experiment of Urban Overpass Vehicle Passage”2023 Teaching Method Reform and“Information Technology+”Smart Teaching Special Research Project Information Technology Multi-Dimensional Research Results of“Enabling Virtual Simulation Experiment Smart Teaching Reform and Practice”。
文摘Virtual simulation experiment,as a new way to promote the digital transformation of education,has a broad development prospect and application value.The civil engineering experimental volume and space are huge,it has a long construction period,is highly dangerous,and is difficult to experiment with.In order to solve the contradiction between the traditional theory teaching of civil engineering and the engineering training of students,the construction of virtual simulation experimental teaching courses with a high degree of realism,intuition,and accuracy can be used as a useful supplement and innovation of experimental and practical teaching.This paper takes the virtual simulation experimental teaching course of urban overpasses as an example,introduces the necessity and practicability of the course construction,and describes the experimental principle structure of the course,the simulation scene design,the experimental teaching process,the experimental method,etc.The course has achieved good application results,and it has been recognized as the first-class virtual simulation teaching course of the Chongqing Municipal Government,which provides certain references to the construction of the same type of courses in the civil engineering profession.
文摘Piles in a group experience additional displacements in soil due to pile-to-pile interactions apart from those resulting from the external loading.The effect of these interactions determined assuming soil as an elastic and/or viscoelastic material on pile head impedance functions of the pile group is studied by relating the group stiffness to the static stiffness of a single pile.However,the prevailing elastic solutions may misestimate the resulting pile group response due to the lack of consideration for either soil(material)and/or soil-pile interface nonlinearities.It is well established that soil behaves nonlinearly under moderate-to-high loading amplitudes,and besides,the soil-pile interface nonlinearity can exist even at small loading amplitudes.This study addresses the effects of these nonlinearities on the vertical impedance functions of a 3×3-pile group using numerical methods by direct analyses and superposition using pile-to-pile interaction factors.The numerical results are validated using scaled model tests under 1 g conditions.The results highlight the overestimation of pile-to-pile interactions in the pile group when assuming elastic soil conditions.The cases either by direct analyses or superposition approach involving soil and soil-pile interface nonlinearities agree well with the experimental pile group responses under close-to-elastic and nonlinear conditions.
基金supported by the National Natural Science Foundation of China(No.52174038 and No.52004307)China Petroleum Science and Technology Project-major project-Research on tight oil-shale oil reservoir engineering methods and key technologies in Ordos Basin(ZLZX2020-02-04)Science Foundation of China University of Petroleum,Beijing(No.2462018YJRC015).
文摘An essential technology of carbon capture, utilization and storage-enhanced oil recovery (CCUS-EOR) for tight oil reservoirs is CO_(2) huff-puff followed by associated produced gas reinjection. In this paper, the effects of multi-component gas on the properties and components of tight oil are studied. First, the core displacement experiments using the CH_(4)/CO_(2) multi-component gas are conducted to determine the oil displacement efficiency under different CO_(2) and CH_(4) ratios. Then, a viscometer and a liquid density balance are used to investigate the change characteristics of oil viscosity and density after multi-component gas displacement with different CO_(2) and CH_(4) ratios. In addition, a laboratory scale numerical model is established to validate the experimental results. Finally, a composition model of multi-stage fractured horizontal well in tight oil reservoir considering nano-confinement effects is established to investigate the effects of multi-component gas on the components of produced dead oil and formation crude oil. The experimental results show that the oil displacement efficiency of multi-component gas displacement is greater than that of single-component gas displacement. The CH_(4) decreases the viscosity and density of light oil, while CO_(2) decreases the viscosity but increases the density. And the numerical simulation results show that CO_(2) extracts more heavy components from the liquid phase into the vapor phase, while CH_(4) extracts more light components from the liquid phase into the vapor phase during cyclic gas injection. The multi-component gas can extract both the light components and the heavy components from oil, and the balanced production of each component can be achieved by using multi-component gas huff-puff.
基金This paper was supported by the 2021 School-Level Education Reform Project of Hainan Tropical Ocean University Fund(RHYjg2021sz03).
文摘As critical measures to educate and cultivate people’s morality,“Ideology and Politics of Course”has gradually become the focus in actual undergraduate education research in universities.Targeting the single ideological and political education mode and students’lack of interest in experimental courses,this paper,through various links,including pre-class preview,in-class teaching,and after-class data analysis,takes the common emitter single tube amplifier experiment as an example to organically integrate the excavated ideological and political elements with practical operation and carry out teaching case design and practice;realize the improvement of students’learning initiative and problem-analysis ability;and achieve the purpose of cultivating people throughout the whole process and in a comprehensive direction.
基金The authors are grateful for financial support from the National Key Projects for Fundamental Research and Development of China(2021YFA1500803)the National Natural Science Foundation of China(51825205,52120105002,22102202,22088102,U22A20391)+1 种基金the DNL Cooperation Fund,CAS(DNL202016)the CAS Project for Young Scientists in Basic Research(YSBR-004).
文摘Photocatalysis,a critical strategy for harvesting sunlight to address energy demand and environmental concerns,is underpinned by the discovery of high-performance photocatalysts,thereby how to design photocatalysts is now generating widespread interest in boosting the conversion effi-ciency of solar energy.In the past decade,computational technologies and theoretical simulations have led to a major leap in the development of high-throughput computational screening strategies for novel high-efficiency photocatalysts.In this viewpoint,we started with introducing the challenges of photocatalysis from the view of experimental practice,especially the inefficiency of the traditional“trial and error”method.Sub-sequently,a cross-sectional comparison between experimental and high-throughput computational screening for photocatalysis is presented and discussed in detail.On the basis of the current experimental progress in photocatalysis,we also exemplified the various challenges associated with high-throughput computational screening strategies.Finally,we offered a preferred high-throughput computational screening procedure for pho-tocatalysts from an experimental practice perspective(model construction and screening,standardized experiments,assessment and revision),with the aim of a better correlation of high-throughput simulations and experimental practices,motivating to search for better descriptors.
基金National Natural Science Foundation of China under Grant No.51978184。
文摘This study focuses on variations in the hysteretic behavior of buckling-restrained braces(BRBs)configured with or without out-of-plane eccentricity under cyclic loading.Quasi-static experiments and numerical simulations were carried out on concentrically and eccentrically loaded BRB specimens to investigate the mechanical properties,energy dissipation performance,stress distribution,and high-order deformation pattern.The experimental and numerical results showed that compared to the concentrically loaded BRBs,the stiffness,yield force,cumulated plastic ductility(CPD)coefficient,equivalent viscous damping coefficient and energy dissipation decreased,and the yield displacement and compression strength adjustment factor increased for the eccentrically loaded BRBs.With the existence of the out-of-plane eccentricity,the initial yield position changes from the yield segment to the junction between the yield segment and transition segment under a tensile load,while the initial high-order buckling pattern changes from a first-order C-shape to a secondorder S-shape under a compressive load.
基金supported by National Natural Science Foundation(52204050)Sichuan Science and Technology Program(2021ZHCG0013,22ZDYF3009)。
文摘Bottom water coning is the main reason to reduce the recovery of horizontal bottom water reservoir. By water coning, we mean the oil-water interface changes from a horizontal state to a mound-shaped cone and breaks through to the wellbore. Autonomous inflow control device(AICD) is an important instrument maintain normal production after bottom water coning, however, the resistance increasing ability of the swirl type AICD is insufficient at present, which seriously affects the water control effect. Aiming this problem, this paper designs a multi-stage resistance-increasing and composite type AICD. The separation mechanism of oil-water two phases in this structure, the resistance form of oil-water single phase and the resistance-increasing principle of water phase are analyzed. Establishing the dual-phase multi-stage separation and resistance-increasing model, and verified by measuring the throttling pressure drop and oil-water volume fraction of the AICD, it is found that the composite type AICD has the effect of ICD and AICD at the same time, which can balance the production rate of each well section at the initial stage of production, delay the occurrence of bottom water coning. In the middle and later stages of production, water-blocking can be effectively increased to achieve water control and stable production.After structural sensitivity analysis, the influence law of various structural parameters on the water control performance of composite AICD was obtained. The simulation calculation results show that,compared with the existing swirl type AICD, composite AICD has higher sensitivity to moisture content,the water phase throttling pressure drop is increased by 4.5 times on average. The composite AICD is suitable for the entire stage of horizontal well production.
基金supported by the National Key R&D Program of China(2021YFB3301100)Beijing University of Chemical Technology Interdisciplinary Program(XK2023-07).
文摘Corrosion leakages often occur in the air cooler of a hydrocracking unit,with the failure sites mainly located in the entrance area of the tubes.An analysis of the macroscopic morphology and corrosion products confirmed that the damage was caused by erosion-corrosion(E-C).Numerical and experimental methods were applied to investigate the E-C mechanism in the air cooler.Computational fluid dynamics(CFD)was used to calculate the hydrodynamic parameters of the air cooler.The results showed that there was a biased flow in the air cooler,which led to a significant increase in velocity,turbulent kinetic energy and wall shear within 0.2 m of the tube entrance.A visualization experiment was then performed to determine the principles of migration and transformation of multiphase flow in the air cooler tubes.Various flow patterns(pure droplet flow,mist flow,and annular flow)and their evolutionary processes were clearly depicted experimentally.The initiation mechanism and processes leading to the development of E-C in the air cooler were also determined.This study provided a comprehensive explanation for the E-C failures that occur in air coolers during operation.
基金the National Key Research and Development Program of China(Grant No.2022YFE0106500)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2022076)+1 种基金the National Key Scientific and Technological Infrastructure project“Earth System Numerical Simulation Facility”(EarthLab2023-EL-ZD-00012)。
文摘The atmospheric carbon dioxide(CO_(2))concentration has been increasing rapidly since the Industrial Revolution,which has led to unequivocal global warming and crucial environmental change.It is extremely important to investigate the interactions among atmospheric CO_(2),the physical climate system,and the carbon cycle of the underlying surface for a better understanding of the Earth system.Earth system models are widely used to investigate these interactions via coupled carbon-climate simulations.The Chinese Academy of Sciences Earth System Model version 2(CAS-ESM2.0)has successfully fixed a two-way coupling of atmospheric CO_(2)with the climate and carbon cycle on land and in the ocean.Using CAS-ESM2.0,we conducted a coupled carbon-climate simulation by following the CMIP6 proposal of a historical emissions-driven experiment.This paper examines the modeled CO_(2)by comparison with observed CO_(2)at the sites of Mauna Loa and Barrow,and the Greenhouse Gases Observing Satellite(GOSAT)CO_(2)product.The results showed that CAS-ESM2.0 agrees very well with observations in reproducing the increasing trend of annual CO_(2)during the period 1850-2014,and in capturing the seasonal cycle of CO_(2)at the two baseline sites,as well as over northern high latitudes.These agreements illustrate a good ability of CAS-ESM2.0 in simulating carbon-climate interactions,even though uncertainties remain in the processes involved.This paper reports an important stage of the development of CAS-ESM with the coupling of carbon and climate,which will provide significant scientific support for climate research and China’s goal of carbon neutrality.
基金National Innovation and Entrepreneurship Program for College Students(202218213001)Science and Technology Innovation Strategy of Guangdong Province(Science and Technology Innovation Cultivation of University Students 2020329182130C000002).
文摘Background Most existing chemical experiment teaching systems lack solid immersive experiences,making it difficult to engage students.To address these challenges,we propose a chemical simulation teaching system based on virtual reality and gesture interaction.Methods The parameters of the models were obtained through actual investigation,whereby Blender and 3DS MAX were used to model and import these parameters into a physics engine.By establishing an interface for the physics engine,gesture interaction hardware,and virtual reality(VR)helmet,a highly realistic chemical experiment environment was created.Using code script logic,particle systems,as well as other systems,chemical phenomena were simulated.Furthermore,we created an online teaching platform using streaming media and databases to address the problems of distance teaching.Results The proposed system was evaluated against two mainstream products in the market.In the experiments,the proposed system outperformed the other products in terms of fidelity and practicality.Conclusions The proposed system which offers realistic simulations and practicability,can help improve the high school chemistry experimental education.
基金supported by the Eleventh Five-year Scientific and Technical Plan (Grant No. 2006BAK01B02-03)the Course Foundation of Nanjing University of Technology (Grant No. 39714004)
文摘The flow field around a spur dike has three-dimensional characteristics. In order to analyze the influence of the flow field on pollutant transport, based on a compressive volume of fluid (VOF) scheme, the three-dimensional transient compressive pollutant transport model (CPTM) and the cubic equation (CE) bounded differencing scheme were developed. For the calibration and validation of CPTM, laboratory experiments were carried out in a flume with a non-submerged spur dike. The spur dike was angled at 60°, 90°, and 120° from the upstream direction. The simulation results agreed with the experimental results. The simulations and experiments showed that the distribution of pollutant concentration was determined by circumfluence and the main flow. Concentration decay in the circumfluenee zone was slower than that in the main flow. Downstream of the spur dike, the concentration fluctuation became intensive with the increase of spur dike angle.
基金supported by State Key Laboratory of Earthquake Dynamics,China
文摘In order to improve our understanding of rock fracture and fault instability driven by high-pressure fluid sources, the authors carried out rock fracture tests using granite under a confining pressure of 80 MPa with fluid injection in the laboratory. Furthermore, we tested a number of numerical models using the FLAC;modeling software to find the best model to represent the experimental results. The high-speed multichannel acoustic emission(AE) waveform recording system used in this study made it possible to examine the total fracture process through detailed monitoring of AE hypocenters and seismic velocity.The experimental results show that injecting high-pressure oil into the rock sample can induce AE activity at very low stress levels and can dramatically reduce the strength of the rock. The results of the numerical simulations show that major experimental results, including the strength, the temporal and spatial patterns of the AE events, and the role of the fluid can be represented fairly well by a model involving(1) randomly distributed defect elements to model pre-existing cracks,(2) random modification of rock properties to represent inhomogeneity introduced by different mineral grains, and(3)macroscopic inhomogeneity. Our study, which incorporates laboratory experiments and numerical simulations, indicates that such an approach is helpful in finding a better model not only for simulating experimental results but also for upscaling purposes.
基金This work was supported by the Project funded by China Postdoctoral Science Foundation under Grant 2019M651081the Merit Funding for the Returned Overseas Personnel Sci-Tech Activities of Shanxi Province under Grant 2016 and Key Research and Development Program of Shanxi(2019)and Innovation Programs of Higher Education Institutions in Shanxi(2019L0305).
文摘A mathematical hydraulic support self-tracking model for three-machine cooperative mining is proposed to address low efficiency and difficulties in strategy evaluation of a fully mechanized coal face.The proposed model uses the coordinates and traction speed of the shearer to calculate the frequency of the circular hydraulic support and realize the coordinated operation of the three-machine mining technology.A unity3d hardware-in-the-loop simulation experimental hearer and hydraulic support platform was used to validate the model of autonomous follow-up.The results indicate that collaborative control of coal mining allowed for an efficiency 3.76%higher than under automatic operation mode and 46.03%higher than under manual control;thus,The mathematical model provided an improved production efficiency of the fully mechanized mining face.The mathematical model also provides a more intelligent and reliable security support,and improves the intelligent level of hydraulic support follow-up control.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41672117 and 41503034)the Hubei Provincial Natural Science Foundation of China (Project No. 2017CFA027)+1 种基金the Open Subject of Shandong Provincial Key Laboratory of Depositional Mineralization & Sedimentary Mineral (Baojun Liu Geoscience Science Foundation) (DMSM2017084)the Open Subject of the State Key Laboratory of Petroleum Resources and Prospecting (PRP/open-1509)
文摘Sesquiterpanes are ubiquitous components of crude oils and ancient sediments.Liquid saturated hydrocarbons from simulated pyrolysis experiments on immature organic-rich mudstone collected from the Lower Cretaceous Hesigewula Sag were analyzed by gas chromatography-mass spectrometry(GC-MS).C14 bicyclic sesquiterpanes,namely,8β(H)-drimane,8β(H)-homodrimane,and 8 a(H)-homodrimane were detected and identified on basis of their diagnostic fragment ions(m/z123,179,193,and 207),and previously published mass spectra data,and these bicyclic sesquiterpanes presented relatively regular characteristics in their thermal evolution.The ratios 8β(H)-drimane/8β(H)-homodrimane,8β(H)-homodrimane/8 a(H)-homodrimane,and 8β(H)-drimane/8 a(H)-homodrimane all show a clear upward trend with increasing temperature below the temperature turning point.Thus,all these ratios can be used as evolution indexes of source rocks in the immature-lowmaturity stage.However,the last two ratios may be more suitable than the first ratio as valid parameters for measuring the extent of thermal evolution of organic matter in the immature-low-maturity stage because their change amplitude with increasing temperature is more obvious.
文摘A planar passive walking model with straight legs and round feet was discussed. This model can walk down steps, both on stairs with even steps and with random steps. Simulations showed that models with small moments of inertia can navigate large height steps. Period-doubling has been observed when the space between steps grows. This period-doubling has been validated by experiments, and the results of experiments were coincident with the simulation.
文摘In modem manufacturing, a new type of sheet metal part with step cross-section in both inner hole and outer edge is proposed. The traditional stamping separating processes can only produce sheet metal part with vertical cross-section. According to the latest developing theory and potential of cold pressure forming: combination of pressure and cold forging, a new flow control forming of sheet metal(FCF) is excogitated based on blanking process of general stamping and combined with cold forging processes such as extrusion and coining, etc, which is aiming at the above-mentioned new type of sheet metal part. With utilization of this new process, the new type of sheet metal parts can be manufactured. In order to shorten the testing period, the numerical simulation was carried out by using DEFORM-3D software, and both deformation and mechanics rules were analyzed. Based on the simulation, both punching part and blanked parts of this new type were successfully developed. Then a new conception of optimal distance between the step walls of inner hole and outside edge was proposed and the design principle for its numerical value was inferred. Furthermore, a mold set for combination of stamping & cold forging was designed and manufactured, by which the technologic experiments were taken for validation with Aluminum plate of thickness 2.35 mm for power battery cover board, which verified the principle of the distance between the step walls. The research of cold pressure forming of thin sheet metal with step cross-section is significant, not only to the development of modem mechanical manufacture, but also to metal plastic forming science.
基金Supported by the National Natural Science Foundation of China(21476049,21506033)Department of Science and Technology of Fujian Province,China(2014R1004-3,2015J01052,2016H4023 and FG-2016005)
文摘In order to obtain the reasonable operating conditions and minimize the power consumption in the stirred bioreactor, the hydrodynamic experiments in the stirred bioreactor have been taken to obtain the basic data. Subsequently, an Eulerian model for the gas–liquid–solid three phase flow in the stirred bioreactor has been proposed and the CFD simulation has been conducted. By comparing the results of experiment and simulation, it can be concluded that the simulation results were consistent with the experimental data. The inner relationship between operating variables and indicators could be obtained by comparing the results of just suspension speed, gas holdup, power consumption and operational maps, further the reasonable operating conditions could be also determined under the minimum power consumption. The operational maps could provide the theoretical foundation for industrial application of the gas–liquid–solid stirred bioreactors under the low solid concentration(no more than 20 wt%).
基金Supported by National Natural Science Foundation of China(Grant No.51176082)Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions of China(Grant No.CIT&TCD20140311)Beijing Municipal Natural Science Foundation of China(Grant No.SQKZ201510016004)
文摘For capturing and recycling of CO2 in the internal combustion engine, Rankle cycle engine can reduce the exhaust pollutants effectively under the condition of ensuring the engine thermal efficiency by using the techniques of spraying water in the cylinder and optimizing the ignition advance angle. However, due to the water spray nozzle need to be installed on the cylinder, which increases the cylinder head design difficulty and makes the combustion conditions become more complicated. In this paper, a new method is presented to carry out the closing inlet and exhaust system for internal combustion engines. The proposed new method uses liquid oxygen to solidify part of cooled CO2 from exhaust system into dry ice and the liquid oxygen turns into gas oxygen which is sent to inlet system. The other part of CO2 is sent to inlet system and mixed with oxygen, which can reduce the oxygen-enriched combustion detonation tendency and make combustion stable. Computing grid of the IP52FMI single-cylinder four-stroke gasoline-engine is established according to the actual shape of the combustion chamber using KIVA-3V program. The effects of exhaust gas recirculation (EGR) rate are analyzed on the temperatures, the pressures and the instantaneous heat release rates when the EGR rate is more than 8%. The possibility of enclosing intake and exhaust system for engine is verified. The carbon dioxide trapping device is designed and the IP52FMI engine is transformed and the CO2 capture experiment is carried out. The experimental results show that when the EGR rate is 36% for the optimum EGR rate. When the liquid oxygen of 35.80-437.40 g is imported into the device and last 1-20 min, respectively, 21.50-701.30 g dry ice is obtained. This research proposes a new design method which can capture CO2 for vehicular internal combustion engine.
文摘A mobile robot developed by Wuhan University for full-path hotline inspection on 220 kV transmission lines was presented. With 4 rotating joints and 2 translational ones, such robot is capable of traveling along non- obstaclestraight-line segment and surmounting straight-line segment obstacles as well as transferring between two spans automatically. Lagrange’s equations were utilized to derive dynamic equations of all the links, including items of inertia, coupling inertia, Coriolis acceleration, centripetal acceleration and gravity. And a dynamic response experiment on elemental motions of robot prototype’s travelling along non-obstacle straight-line segment and surmounting obstacles was performed on 220 kV 1∶1 simulative overhanging transmission-line in laboratory. In addition, dynamic numerical simulation was conducted in the corresponding condition. Comparison and analysis on results of experiment and numerical simulation have validated theoretical model and simulation resolution. Therefore, the dynamic model formed hereunder can be used for the study of robot control.