期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
Preparation and property of seal coating for gas turbine compressor
1
作者 余沛坰 刘中华 +2 位作者 郑健生 徐伏根 陈千宝 《China Welding》 CAS 2024年第1期60-64,共5页
Double-layer structure of seal coating which consisted of a Ni5Al bond coating and a Ni25 graphite top coating were prepared on steel substrate of gas turbine compressor cylinder block.Bond coating was prepared by atm... Double-layer structure of seal coating which consisted of a Ni5Al bond coating and a Ni25 graphite top coating were prepared on steel substrate of gas turbine compressor cylinder block.Bond coating was prepared by atmospheric plasma spraying and top coating was prepared by flame spraying.The microstructure,mechanical properties and abradability of the coating were characterized by scanning elec-tron microscope(SEM),hardness tester,universal testing machine,thermal shock testing machine and abradability testing machine.The res-ults show that the overall spraying structure of the seal coating is uniform,the nickel metal phase is the skeleton supporting the entire coat-ing,and the coating is well bonded without separation.The seal coating has a bonding strength of not less than 7.7 MPa,excellent thermal stability,and thermal shock resistance cycle numbers at 500℃more than 50;the scratch length,deepest invasion depth and wear amount of the coating increase with rise of test temperature,with almost no coating adhesion,indicating that the seal coating has excellent abradability. 展开更多
关键词 gas turbine compressor seal coating MICROSTRUCTURE mechanical property abradability
下载PDF
Fluid-structure Interaction Analysis and Lifetime Estimation of a Natural Gas Pipeline Centrifugal Compressor under Near-choke and Near-surge Conditions 被引量:12
2
作者 JU Yaping LIU Hui +2 位作者 YAO Ziyun XING Peng ZHANG Chuhua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第6期1261-1268,共8页
Up to present, there have been no studies concerning the application of fluid-structure interaction(FSI) analysis to the lifetime estimation of multi-stage centrifugal compressors under dangerous unsteady aerodynami... Up to present, there have been no studies concerning the application of fluid-structure interaction(FSI) analysis to the lifetime estimation of multi-stage centrifugal compressors under dangerous unsteady aerodynamic excitations. In this paper, computational fluid dynamics(CFD) simulations of a three-stage natural gas pipeline centrifugal compressor are performed under near-choke and near-surge conditions, and the unsteady aerodynamic pressure acting on impeller blades are obtained. Then computational structural dynamics(CSD) analysis is conducted through a one-way coupling FSI model to predict alternating stresses in impeller blades. Finally, the compressor lifetime is estimated using the nominal stress approach. The FSI results show that the impellers of latter stages suffer larger fluctuation stresses but smaller mean stresses than those at preceding stages under near-choke and near-surge conditions. The most dangerous position in the compressor is found to be located near the leading edge of the last-stage impeller blade. Compressor lifetime estimation shows that the investigated compressor can run up to 102.7 h under the near-choke condition and 200.2 h under the near-surge condition. This study is expected to provide a scientific guidance for the operation safety of natural gas pipeline centrifugal compressors. 展开更多
关键词 three-stage pipeline centrifugal compressor natural gas aerodynamic performance structural durability lifetime estimation CHOKE SURGE
下载PDF
Prediction of gas pulsation of an industrial compressor 被引量:1
3
作者 Heuicheol Kim Mi-Gyung Cho +2 位作者 Jaehong Park Cheolho Bai Jaesool Shim 《Journal of Central South University》 SCIE EI CAS 2013年第10期2735-2740,共6页
The measurement and prediction of gas pulsations are performed along the discharge pipeline of a reciprocating compressor for a refrigerator. A regression based experimental model of the one-dimensional acoustic field... The measurement and prediction of gas pulsations are performed along the discharge pipeline of a reciprocating compressor for a refrigerator. A regression based experimental model of the one-dimensional acoustic field is developed. First, the conventional method for gas pulsation measurement and prediction, which separates the incident and reflected wave of acoustic waves traveling in the frequency domain, is discussed. Then, regression based on our proposed simple model, which is able to predict gas pulsation compared to the conventional method, is introduced for the analysis of a reciprocating compressor(The conventional method requires the value of sound speed in the piping line for the reciprocating compressor). A numerical prediction is made for the regression method. Three power spectrum values along the discharge pipeline are used for analysis, and two values are used for verification. Our results are in a good agreement with the conventional method. 展开更多
关键词 gas PULSATION reciprocating compressor DISCHARGING PIPING LINE regression model
下载PDF
Numerical forecasting surge in a piping of compressor shops of gas pipeline network 被引量:1
4
作者 SELEZNEV V. E. PRYALOV S. N. 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第11期1775-1788,共14页
This paper presents a method of forecasting stable operation of gas compressor unit (GCU) centrifugal supercharger (CFS) installed on a piping of compressor shops servicing gas pipelines. The stability of supercharger... This paper presents a method of forecasting stable operation of gas compressor unit (GCU) centrifugal supercharger (CFS) installed on a piping of compressor shops servicing gas pipelines. The stability of superchargers operation is assessed in relation to the phenomenon of surge. Solution of this problem amounts to the development and numerical analysis of a set of ordinary differential equations. The set describes transmission of gas through a compressor shop as a fluid dynamics model with lumped parameters. The proposed method is oriented to wide application by specialists working in the gas industry. The practical application of this method can use all-purpose programming and mathematical software available to specialists of gas companies. 展开更多
关键词 gas pipelines compressor station Centrifugal supercharger (CFS) SURGE Numerical simulation
下载PDF
Computer-Aided Solution to the Vibrational Effect of Instabilities in Gas Turbine Compressors 被引量:1
5
作者 Ezenwa Alfred Ogbonnaya Hyginus Ubabuike Ugwu Charles Agbeju Nimibofa Johnson 《Engineering(科研)》 2010年第8期658-664,共7页
Surge and stall are the two main types of instabilities that often occur on the compressor system of gas turbines. The effect of this instability often leads to excessive vibration due to the back pressure imposed to ... Surge and stall are the two main types of instabilities that often occur on the compressor system of gas turbines. The effect of this instability often leads to excessive vibration due to the back pressure imposed to the system by this phenomenon. In this work, fouling was observed as the major cause of the compressor instability. A step to analyze how this phenomenon can be controlled with the continuous examination of the vibration amplitude using a computer approach led to the execution of this work. The forces resulting to vibration in the system is usually external to it. This external force is aerodynamic and the effect was modeled using force damped vibration analysis. A gas turbine plant on industrial duty for electricity generation was used to actualize this research. The data for amplitude of vibration varied between -15 and 15 mm/s while the given mass flow rate and pressure ratio were determined as falling between 6.1 to 6.8 kg/s and 9.3 to 9.6 respectively. A computer program named VICOMS written in C++ programming language was developed. The results show that the machine should not be run beyond 14.0 mm vibration amplitude in order to avoid surge, stall and other flow-induced catastrophic breakdown. 展开更多
关键词 COMPUTERIZED Solution INSTABILITIES VIBRATION gas TURBINE compressors OPERATIONAL Limits
下载PDF
Application of Natural Gas Compressor inMid or Late Stage Gas Fields
6
《China Oil & Gas》 CAS 1997年第2期108-109,共2页
关键词 compressor gas LIFTING APPLICATION
下载PDF
Gas Turbine Performance Optimization Using Compressor Online Water Washing Technique
7
作者 Ezenwa A. Ogbonnaya 《Engineering(科研)》 2011年第5期500-507,共8页
The ability to predict the behaviour of a gas turbine engine and optimize its performance is critical in eco-nomic, thermal and condition monitoring studies. Having identified fouling as one of the major sources of co... The ability to predict the behaviour of a gas turbine engine and optimize its performance is critical in eco-nomic, thermal and condition monitoring studies. Having identified fouling as one of the major sources of compressor and therefore gas turbine deterioration, a computer-based engine model was developed to optimize the performance of gas turbines. The paper thus presents an analysis of compressor hand cleaning, on and offline compressor washing to actualize the technique using a computer program in Visual Basic programming language with data collected over a period of fifteen weeks for 2 gas turbine plants GT1 and GT2. The results of the data collected, when collated, shows that after washing, the overall operational efficiency changed from 39.2% to 46.25%. To optimize the performance of gas turbine engines, it is therefore recommended that operators should perform a combination of compressor hand cleaning, offline and online washing simultaneously. 展开更多
关键词 gas TURBINE TURBOMACHINERY Components FOULING Performance Optimization Operational PRACTICES compressor Water WASHING
下载PDF
Influence of Real Gas Properties on Aerodynamic Losses in a Supercritical CO_(2) Centrifugal Compressor
8
作者 YANG Mingyang CAI Ruikai +2 位作者 ZHUGE Weilin YANG Bijie ZHANG Yangjun 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第6期2032-2046,共15页
Supercritical carbon dioxide(SCO_(2))centrifugal compressor is a key component of a closed Brayton cycle system based on SCO_(2).A comprehensive understanding of the loss mechanism within the compressor is vital for i... Supercritical carbon dioxide(SCO_(2))centrifugal compressor is a key component of a closed Brayton cycle system based on SCO_(2).A comprehensive understanding of the loss mechanism within the compressor is vital for its optimized design.However,the physical properties of SCO_(2) are highly nonlinear near the critical point,and the internal flow of the compressor is closely related to its properties,which inevitably influences the generation of aerodynamic losses within the compressor.This paper presents a comprehensive investigation of the compressor's loss mechanism with an experimentally validated numerical method.The real gas model of CO_(2) embodied in the Reynolds-Averaged Navier-Stokes(RANS)model was used for the study.Firstly,the numerical simulation method was validated against the experimental results of Sandia SCO_(2) compressor.Secondly,performance and loss distribution of the compressor were compared among three fluids including SCO_(2),ideal CO_(2)(ICO_(2))and ideal air(IAir).The results showed that the performance of SCO_(2) was comparable to IAir under low flow coefficient,however markedly inferior to the other two fluids at near choke condition.Loss distribution among the three fluids was distinctive.In the impeller,SCO_(2) was the most inefficient,followed by ICO_(2) and IAir.The discrepancies were magnified as the flow coefficient increased.This is due to a stronger Blade-to-Blade pressure gradient that intensifies boundary layer accumulation on walls of the shroud/hub.Furthermore,owing to the reduced sonic speed of SCO_(2),a shock wave appears earlier at the throat region and SCO_(2) encounters more intenseboundarylayerseparation. 展开更多
关键词 SCO_(2) centrifugal compressor loss mechanism real gas properties
原文传递
Development of High Efficiency Swing Compressor for R32 Refrigerant 被引量:1
9
作者 Yuuichi Yamamoto Takehiro Kanayama +1 位作者 Kenichi Yuasa Hideki Matsua 《Journal of Energy and Power Engineering》 2015年第2期161-165,共5页
In the age of global warming, energy saving features and overall reduction of environmental impact are critical components that must be addressed when developing new HVAC (heating ventilation and air conditioning) u... In the age of global warming, energy saving features and overall reduction of environmental impact are critical components that must be addressed when developing new HVAC (heating ventilation and air conditioning) units. We chose R32 refrigerant, with its lower LCCP (life cycle climate performance) as a more sustainable choice than R410A. However, R32 has its drawbacks. Due to its smaller molecular weight, internal leakage loss is higher for R32. Moreover, high discharge gas temperature decreases the reliability of the compressor, and makes a large overheating loss increase. In this study, we will describe the technologies (reducing the piston pressurizing force, heat-insulating structure, optimizing the port diameter) that were developed to overcome these drawbacks. We will also oresent the performance and reliability of the newly develoned high efficiency swing, comnressor series for R32 refrigerant. 展开更多
关键词 GWP(global warming potential) R32 refrigerant rotary compressor swing type compressor discharge gas temperature.
下载PDF
Study on seal improvement and rotor thrust control of centrifugal compressor
10
作者 王维民 Gao Jinji Li Shuangxi Jiang Zhinong 《High Technology Letters》 EI CAS 2007年第3期273-278,共6页
Fluid pressure variations due to process fluctuations or balance drum seal degradation can result in rotor thrust increasing that may jeopardize thrust bearing and compressor’s reliability. Also, the leakage flow thr... Fluid pressure variations due to process fluctuations or balance drum seal degradation can result in rotor thrust increasing that may jeopardize thrust bearing and compressor’s reliability. Also, the leakage flow through balance drum seal can seriously affect the efficiency of compressor. A method that can improve both the efficiency and reliability of centrifugal compressor is presented. The method focused on rotor thrust control and balance drum seal upgrading. The low leakage feature of Dry-Gas-Seal(DGS), high reliability of labyrinth, and the feasibility of upgrading existing structure are taken into account at the same time to design a combined labyrinth-dry gas seal system on the balancing drum. Based on the combined seal system, a Fault Self-Recovering(FSR) system for the fault of rotor shaft displacement is introduced to assure the safety and reliability of centrifugal compressor. The modern Computational Fluid Dynamics(CFD) is used to validate this envision. The numerical result and relevant information indicate that the combined sealing system could improve the efficiency of the centrifugal compressor by about 4%. 展开更多
关键词 centrifugal compressor EFFICIENCY dry gas seal rotor thrust FSR
下载PDF
Testing of the Ultra-Micro Gas Turbine Devices (1 - 10 kW) for Portable Power Generation at University of Roma 1: First Tests Results
11
作者 Alfonso Calabria Roberto Capata +1 位作者 Mario Di Veroli Gianluca Pepe 《Engineering(科研)》 2013年第5期481-489,共9页
The ever increasing development of portable electronics has led to a higher demand for compact and reliable power sources. Significant resources are being presently dedicated to the study of micro machined gas turbine... The ever increasing development of portable electronics has led to a higher demand for compact and reliable power sources. Significant resources are being presently dedicated to the study of micro machined gas turbines, because of their remarkable power density. The paper reports the procedures and the results of a series of tests conducted at the Department of Mechanical & Aerospace Engineering of University of Roma 1, to obtain the map of an ultra-micro gas turbine device, and the head losses and the combustion efficiency of the corresponding ultra-micro combustion chamber, fed by a mixture of butane and propane. This work is a part of a research aimed at the conception, design and prototyping of an ultra-micro thermo-electrical device for portable power generation. The novelty of the research consists in the fact that the thermal engine is a (ultra-micro) gas turbine set. In a subsequent stage, several different configurations have been assessed to select the most proper geometry and structural characteristics of the most relevant components (radial compressor, radial turbine, combustion chamber, electric motor and generator, bearings, regenerative heat exchanger). 展开更多
关键词 Ultra-Micro Components gas TURBINE RADIAL compressor Combustion CHAMBER
下载PDF
Influence of Different Equations of State on Simulation Results of Supercritical CO_(2) Centrifugal Compressor
12
作者 Yueming YANG Bingkun MA +1 位作者 Yongqing XIAO Jianhui QI 《Mechanical Engineering Science》 2021年第2期25-33,共9页
Supercritical CO_(2)(SCO_(2))Brayton cycle has received more and more attention in the field of power generation due to its high cycle efficiency and compact structure.SCO_(2) compressor is the core component of the c... Supercritical CO_(2)(SCO_(2))Brayton cycle has received more and more attention in the field of power generation due to its high cycle efficiency and compact structure.SCO_(2) compressor is the core component of the cycle,and the improvement of its performance is the key to improving the efficiency of the entire cycle.However,the operation of the SCO_(2) compressor near the critical point has brought many design and operation problems.Based on the Reynolds Averaged Navier-Stokes(RANS)model,the performance and flow field of SCO_(2) centrifugal compressors based on different CO_(2) working fluid models are numerically investigated in this paper.The stability and convergence of the compressor steady-state simulation are also discussed.The results show that the fluid based on the Span-Wanger(SW)equation can obtain a more ideal compressor performance curve and capture a more accurate flow field structure,while the CO_(2) ideal gas is not suitable for the calculation of SCO_(2) centrifugal compressors.But its flow field can be used as the initial flow field for numerical calculation of centrifugal compressor based on CO_(2) real gas. 展开更多
关键词 Supercritical CO_(2) Centrifugal compressor Near the critical point compressor performance Real gas equation of state
下载PDF
Design of Process Centrifugal Compressor: an Adapted Algorithm
13
作者 Muhammad Ali Ashjari Hassan Ali Marefat Reza Shahhosseini 《Journal of Energy and Power Engineering》 2014年第2期237-243,共7页
Considering the essential and influential role of centrifugal compressors in a wide range of industries makes most of engineers research and study on design and optimization of centrifugal compressors. Centrifugal com... Considering the essential and influential role of centrifugal compressors in a wide range of industries makes most of engineers research and study on design and optimization of centrifugal compressors. Centrifugal compressors are the key to part ofoil, gas and petrochemical industries as well as gas pipeline transports. Since complete 3D design of the compressor consumes a considerable amount of time, most of active companies in the field, are profoundly interested in obtaining a design outline before taking any further steps in designing the entire machine. In this paper, a numerical algorithm, named ACDA (adapted compressor design algorithm) for fast and accurate preliminary design of centrifugal compressor is presented. The design procedure is obtained under real gas behavior, using an appropriate equation of state. Starting from impeller inlet, the procedure is continued on by resulting in numerical calculation for other sections including impeller exit, volute and exit diffuser. Clearly, in any step suitable correction factors are employed in order to conclude in precise numerical results. Finally, the achieved design result is compared with available reference data. 展开更多
关键词 Process centrifugal compressor adapted design algorithm real gas.
下载PDF
Simulation of natural gas transmission pipeline network system performance
14
作者 Abraham Debebe Woldeyohannes Mohd Amin Abd Majid 《Journal of Energy and Power Engineering》 2009年第12期29-38,共10页
Simulation has proven to be an effective tool for analyzing pipeline network systems (PNS) in order to determine the design and operational variables which are essential for evaluating the performance of the system.... Simulation has proven to be an effective tool for analyzing pipeline network systems (PNS) in order to determine the design and operational variables which are essential for evaluating the performance of the system. This paper discusses the use of simulation for performance analysis of transmission PNS. A simulation model was developed for determining flow and pressure variables for different configuration of PNS. The mathematical formulation for the simulation model was derived based on the principles of energy conservation, mass balance, and compressor characteristics. For the determination of the pressure and flow variables, solution procedure was developed based on iterative Newton Raphson scheme and implemented using visual C++6. Evaluations of the simulation model with the existing pipeline network system showed that the model enabled to determine the operational variables with less than ten iterations. The performances of the compressor working in the pipeline network system xvhich includes energy consumption, compression ratio and discharge pressure were evaluated to meet pressure requirements ranging from 4000-5000 kPa at various speed. Results of the analyses from the simulation indicated that the model could be used for performance analysis to assist decisions regarding the design and optimal operations of transmission PNS. 展开更多
关键词 ENERGY transmission pipeline network: compressor station: natural gas simulation
下载PDF
The effects of gas models on the predicted performance and flow of a centrifugal refrigeration compressor stage 被引量:2
15
作者 WANG ZhiHeng XI Guang 《Science China(Technological Sciences)》 SCIE EI CAS 2008年第8期1160-1168,共9页
In this paper three perfect gas models with constant specific heat or with variable specific heat and one real gas model based on the gas property tables are respec- tively considered to implement into the three-dimen... In this paper three perfect gas models with constant specific heat or with variable specific heat and one real gas model based on the gas property tables are respec- tively considered to implement into the three-dimensional CFD (computational fluid dynamics) analysis of a centrifugal refrigeration compressor stage. The results show that the gas models applied to the CFD code have significant influences on the performance of stage and the flow structures in the stage. Although the ther- modynamics operating condition of evolving fluid in the centrifugal refrigeration compressor has a significant deviation from the perfect gas, the perfect gas model with the modified value of gas constant and the variable specific heat offers a good prediction of stage performance. To predict some basic fluid flow parameters and flow structure accurately, the real gas effects should be considered and the rea- sonably accurate thermodynamic properties based on the analytical gas equation of state or numerical interpolation of gas tables should be applied to the CFD code. 展开更多
关键词 gas model NUMERICAL analysis CENTRIFUGAL REFRIGERATION compressor
原文传递
Development of Compressor for Ultra Micro Gas Turbine 被引量:1
16
作者 Shimpei MIZUKI 《Journal of Thermal Science》 SCIE EI CAS CSCD 2007年第1期19-27,共9页
The major problems for the development of an ultra micro gas turbine system were discussed briefly from the stand point of the internal flow and the performance characteristics. Following to these, the development of ... The major problems for the development of an ultra micro gas turbine system were discussed briefly from the stand point of the internal flow and the performance characteristics. Following to these, the development of ultra micro centrifugal compression systems for the ultra micro gas turbine is explained with the design and the manufacturing processes. The measured results of ultra micro centrifugal compressors are shown. 展开更多
关键词 ultra micro gas turbine ultra micro centrifugal compressor
原文传递
Micro gas turbine:Developments,applications,and key technologies on components 被引量:2
17
作者 Jingqi Li Yulong Li 《Propulsion and Power Research》 SCIE 2023年第1期1-43,共43页
Owing to their precedent characteristics,micro gas turbines(MGTs)have been favored as popular power machinery in plenty of energy systems such as distributed energy systems,range extenders,solar power generations,fuel... Owing to their precedent characteristics,micro gas turbines(MGTs)have been favored as popular power machinery in plenty of energy systems such as distributed energy systems,range extenders,solar power generations,fuel cell systems and individual power supplies.Their specific features essentially include but are not limited to strong fuel adaptability,low emissions,flexible structure,and easy maintenance.Over the past 20 years,various types of MGTs have been developed.Classical and forward-looking technologies have been employed in the design and production of MGTs and their components.Among them,fully radial flow structures,gas lubricated bearings and efficient recuperators are typical approaches to enhance the overall performance and compactness,however,the exploitation of ceramic based materials and intelligent algorithms in component design can also assist in improving the performance.The applications of MGTs have been expanded to many fields,and the research on related components has also made new progress.Due to the time frame,there is no systematic summary of the latest relevant research,so it is essential to have a comprehensive understanding of the applications of MGTs and their pertinent components.This paper aims to present a comprehensive review on MGTs,covering the development status,applications,factors of performance and representative explorations of their components.Some investigations regarding the characteristics of commercial MGTs are also conducted.Applications in distributed energy,range extenders,solar generations,and fuel cell systems are distinctly introduced.Recent research work on compressors,turbines,combustors,recuperators,and rotor systems are reviewed and analyzed.The technologies and methods associated with materials,manufacturing,and cycles beneficial to the future development of MGTs are also explained and discussed in some detail. 展开更多
关键词 Distributed generation Micro gas turbines(MGTs) compressor TURBINE OPTIMIZATION
原文传递
A Self-Learning Diagnosis Algorithm Based on Data Clustering
18
作者 Dmitry Tretyakov 《Intelligent Control and Automation》 2016年第3期84-92,共9页
The article describes an approach to building a self-learning diagnostic algorithm. The self-learning algorithm creates models of the object under consideration. The models are formed periodically through a certain ti... The article describes an approach to building a self-learning diagnostic algorithm. The self-learning algorithm creates models of the object under consideration. The models are formed periodically through a certain time period. The model includes a set of functions that can describe whole object, or a part of the object, or a specified functionality of the object. Thus, information about fault location can be obtained. During operation of the object the algorithm collects data received from sensors. Then the algorithm creates samples related to steady state operation. Clustering of those samples is used for the functions definition. Values of the functions in the centers of clusters are stored in the computer’s memory. To illustrate the considered approach, its application to the diagnosis of turbomachines is described. 展开更多
关键词 SELF-LEARNING Diagnostics Fault Detection CLUSTERS K-MEANS Turbomachine gas Turbine Centrifugal Supercharger gas compressor Unit
下载PDF
Cascading Failure Propagation Simulation in Integrated Electricity and Natural Gas Systems 被引量:12
19
作者 Zhejing Bao Qihong Zhang +1 位作者 Lei Wu Dawei Chen 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2020年第5期961-970,共10页
The sharp increase in the total installed capacity of natural gas generators has intensified the dynamic interaction between the electricity and natural gas systems,which could induce cascading failure propagation acr... The sharp increase in the total installed capacity of natural gas generators has intensified the dynamic interaction between the electricity and natural gas systems,which could induce cascading failure propagation across the two systems that deserves intensive research.Considering the distinct time response behaviors of the two systems,this paper discusses an integrated simulation approach to simulate the cascading failure propagation process of integrated electricity and natural gas systems(IEGSs).On one hand,considering instantaneous re-distribution of power flows after the occurrence of disturbance or failure,the steady-state AC power flow model is employed.On the other hand,gas transmission dynamics are represented by dynamic model to capture the details of its transition process.The interactions between the two systems,intensified by energy coupling components(such as gas-fired generator and electricity-driven gas compressor)as well as the switching among the operation modes of compressors during the cascading failure propagation process,are studied.An IEGS composed of the IEEE 30-bus electricity system and a 14-node 15-pipeline gas system is established to illustrate the effectiveness of the proposed simulation approach,in which two energy sub-systems are coupled by compressor and gas-fired generator.Numerical results clearly demonstrate that heterogeneous interactions between electricity and gas systems would trigger the cascading failure propagation between the two coupling systems. 展开更多
关键词 Cascading failure propagation integrated electricity and natural gas system(IEGS) gas compressor transmission dynamics
原文传递
Performance assessment of simple and modified cycle turboshaft gas turbines 被引量:4
20
作者 Barinyima Nkoi Pericles Pilidis Theoklis Nikolaidis 《Propulsion and Power Research》 SCIE 2013年第2期96-106,共11页
This paper focuses on investigations encompassing comparative assessment of gasturbine cycle options.More specifically,investigation was caried out of technical performanceof turboshaft engine cycles based on existing... This paper focuses on investigations encompassing comparative assessment of gasturbine cycle options.More specifically,investigation was caried out of technical performanceof turboshaft engine cycles based on existing simple cycle(SC)and its projected modifiedcycles for civil helicopter application.Technically,thermal efficiency,specific fuel consump-tion,and power output are of paramount importance to the overall performance of gas urbineengines.In course of carrying out this research,turbomatch software established at CranfieldUniversity based on gas turbine theory was applied to conduct simulation of a simple cycle(baseline)two-spool helicopter turboshaft engine model with free power turbine.Similarly,some modified gas urbine cycle configurations incoporating unconventional components,such as engine cycle with low pressure compressor(LPC)zero-staged,recuperated enginecycle,and intercooled/recuperated(ICR)engine cycle,were also simulated.In doing so,designpoint(DP)and off-design point(OD)performances of the engine models were established.Thepercentage changes in performance parameters of the modified cycle engines over the simplecycle were evaluated and it was found that to a large extent,the modified engine cycles withunconventional components exhibit better performances in terms of thermal efficiency andspecific fuel consumption than the traditional simple cycle engine.This research made use ofpublic domain open source references. 展开更多
关键词 gas turbines Turboshaft Technical performance INTERCOOLED Recuperated Low pressure compressor(LPC)zero-staged Simple cycle Comparative assessment
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部