This paper presents a new method for the dynamics of multibody systems based on unknown constraint force. The method can uniformly solve multibody systems with typical configurations, including the system with rigid-f...This paper presents a new method for the dynamics of multibody systems based on unknown constraint force. The method can uniformly solve multibody systems with typical configurations, including the system with rigid-flexible coupling, the system in tree topology, and the system with loop constraints. Unlike common methods, the proposed method can model the loop system without “cutting off” loop constraints, leading to the exact same modelling process as the tree-like system performs. Based on graph theory, a topological record matrix M_(rec) is proposed to capture the arbitrary system configuration. Moreover, constraint forces are selected as the key variables in semi-recursive framework. With the recursive kinematics relationship between adjacent bodies, the constraint force equation is further assembled to achieve the full-state system solution. The numerical simulations demonstrate the accuracy of the proposed method.展开更多
基金supported by the National Key Research and Development Program of China(Grant No. 2018AAA0103003)the National Natural Science Foundation of China(Grant No. 11972056)。
文摘This paper presents a new method for the dynamics of multibody systems based on unknown constraint force. The method can uniformly solve multibody systems with typical configurations, including the system with rigid-flexible coupling, the system in tree topology, and the system with loop constraints. Unlike common methods, the proposed method can model the loop system without “cutting off” loop constraints, leading to the exact same modelling process as the tree-like system performs. Based on graph theory, a topological record matrix M_(rec) is proposed to capture the arbitrary system configuration. Moreover, constraint forces are selected as the key variables in semi-recursive framework. With the recursive kinematics relationship between adjacent bodies, the constraint force equation is further assembled to achieve the full-state system solution. The numerical simulations demonstrate the accuracy of the proposed method.