MnO_(2)/Melem composites were synthesized with MnO_(2)nanoparticles loaded onto the Melem using the hydrothermal method.As raw materials for C and N carriers,Melem was prepared from melamine roasted at 354℃,and KMnO_...MnO_(2)/Melem composites were synthesized with MnO_(2)nanoparticles loaded onto the Melem using the hydrothermal method.As raw materials for C and N carriers,Melem was prepared from melamine roasted at 354℃,and KMnO_(4)as a raw material for Mn,MnO_(2)nanoparticles were prepared using the hydrothermal synthesis of KMnO_(4).Scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD),and a laser particle size analyzer were used for structural characterization,and the catalytic oxidation performance of the heavy oil was investigated at different reaction temperatures(100℃to 180℃)using MnO_(2)/Melem with an oxidant and donor protonic acid.The results showed that the synthesizedβ-MnO_(2)nanoparticles were successfully loaded onto the Melem surface;the oil samples before and after the reaction at different temperatures were subjected to SARA analysis using Fourier transform infrared(FT-IR),elemental analysis,gas chromatography-mass spectrometry(GC-MS)and viscosity tests,respectively.It was determined that the hydrocarbons in the crude oil were converted to heavy mass by oxidation reactions with the oxidant mainly through a low-temperature oxidation process below 140℃in the heavy oil when the temperature exceeds 140℃,in addition to the oxidation reaction with the oxidant,a cleavage reaction in the carbon chain occurs to form hydrocarbon substances with lower molecular weights.展开更多
The rules on regulating aromatic compounds production was investigated by aqueous cat- alytic reforming of sorbitol. It was found that aromatics, ketones, furans, organic acids were main compounds in organic phase. Th...The rules on regulating aromatic compounds production was investigated by aqueous cat- alytic reforming of sorbitol. It was found that aromatics, ketones, furans, organic acids were main compounds in organic phase. The obvious effect of metal content showed that the highest carbon selectivity of aromatics was 34.36% when 3wt% Ni content was loaded on HZSM-5 zeolite modified by MCM-41. However, it was decreased only to 4.82% when Ni content was improved to 20wt%. Meanwhile, different reaction parameters also displayed important impacts on carbon selectivity. It was improved with the increase of temperature, while it was decreased as liquid hourly space velocity and hydrogen pressure was increased. The results showed that appropriate higher temperature, longer contact time and lower hy- drogen pressure were in favor of aromatics information, which suggested a feasible process to solve energy crisis.展开更多
We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield...We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass. The product gas was a mixed gas containing 72%H2, 26%CO2, 1.9%CO, and a trace amount of CH4. It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%). The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H20. In addition, the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.展开更多
High-efficient production of hydrogen from bio-oil was performed by electrochemical catalytic reforming method over the CoZnAl catalyst. The influence of current on the hydrogen yield, carbon conversion, and products ...High-efficient production of hydrogen from bio-oil was performed by electrochemical catalytic reforming method over the CoZnAl catalyst. The influence of current on the hydrogen yield, carbon conversion, and products distribution were investigated. Both the hydrogen yield and carbon conversion were remarkably enhanced by the current through the catalyst, reaching hydrogen yield of 70% and carbon conversion of 85% at a lower reforming temperature of 500 ℃. The influence of current on the properties of the CoZnAl catalyst was also characterized by X-ray diffraction, X-ray photoelectron spectroscopy, thermal gravimetric analysis, and Brunauer-Emmett-Teller measurements. The thermal electrons would play an important role in promoting the reforming reactions of the oxygenated-organic compounds in the bio-oil.展开更多
The reforming of anisole (as model compound of bio-oil) was performed over the NiCuZn-Al2O3 catalyst, using a recently-developed electrochemical catalytic reforming (ECR). The influence of-the current on the aniso...The reforming of anisole (as model compound of bio-oil) was performed over the NiCuZn-Al2O3 catalyst, using a recently-developed electrochemical catalytic reforming (ECR). The influence of-the current on the anisole reforming in the ECR process has been investigated. It was observed that anisole reforming was significantly enhanced by the current approached over the catalyst in the electrochemical catalytic process, which was due to the non-uniform temperature distribution in the catalytic bed and the role of the thermal electrons originating from the electrified wire. The maximum hydrogen yield of 88.7% with a carbon conversion of 98.3% was obtained through the ECR reforming of anisole at 700℃ and 4 A. X-ray diffraction was employed to characterize catalyst features and their alterations in the anisole reforming. The apparent activation energy for the anisole reforming is calculated as 99.54 kJ/mol, which is higher than ethanol, acetic acid, and light fraction of bio-oil. It should owe to different physical and chemical properties and reforming mechanism for different hydrocarbons.展开更多
A new 18-lump kinetic model for naphtha catalytic reforming reactions is discussed. By developing this model as a user module, a whole industrial continuous catalytic reforming process is simulated on Aspen plus plat-...A new 18-lump kinetic model for naphtha catalytic reforming reactions is discussed. By developing this model as a user module, a whole industrial continuous catalytic reforming process is simulated on Aspen plus plat-form. The technique utilizes the strong databases, complete sets of modules, and flexible simulation tools of the Aspen plus system and retains the characteristics of the proposed kinetic model. The calculated results are in fair agreement with the actual operating data. Based on the model of the whole reforming process, the process is opti-mized and the optimization results are tested in the actual industrial unit for about two months. The test shows that the process profit increases about 1000yuan·h-1 averagely, which is close to the calculated result.展开更多
The nickel-based catalysts were prepared by the sol-gel method and used for the CH4 reforming with CO2. The effects of the sol-gel method on the specific surface area, catalytic activity, desorption, and reduction per...The nickel-based catalysts were prepared by the sol-gel method and used for the CH4 reforming with CO2. The effects of the sol-gel method on the specific surface area, catalytic activity, desorption, and reduction performances of catalysts were investigated with BET, TPR, and TPD. Compared with the catalyst prepared by the impregnation method, the results indicated that the catalysts prepared by the sol-gel method had larger specific surface area, showing higher catalytic activities and exhibiting perfect desorption and reduction performances. In addition, the modification effects of adding La were studied, and it was found that the 0.75NLBT catalyst constituted of 5wt.%Ni-0.75wt.%La was optimal.展开更多
Hydrogen production by catalytic steam reforming of the bio-oil, naphtha, and CH4 was investigated over a novel metal-doped catalyst of (Ca24Al28O64)^4+·4O^-/Mg (C12A7-Mg). The catalytic steam reforming was ...Hydrogen production by catalytic steam reforming of the bio-oil, naphtha, and CH4 was investigated over a novel metal-doped catalyst of (Ca24Al28O64)^4+·4O^-/Mg (C12A7-Mg). The catalytic steam reforming was investigated from 250 to 850℃ in the fixed-bed continuous flow reactor. For the reforming of bio-oil, the yield of hydrogen of 80% was obtained at 750℃, and the maximum carbon conversion is nearly close to 95% under the optimum steam reforming condition. For the reforming of naphtha and CH4, the hydrogen yield and carbon conversion are lower than that of bio-oil at the same temperature. The characteristics of catalyst were also investigated by XPS. The catalyst deactivation was mainly caused by the deposition of carbon in the catalytic steam reforming process.展开更多
A first principles-based dynamic model for a continuous catalyst regeneration (CCR) platforming process, the UOP commercial naphtha catalytic reforming process, is developed in this paper. The lumping details of the n...A first principles-based dynamic model for a continuous catalyst regeneration (CCR) platforming process, the UOP commercial naphtha catalytic reforming process, is developed in this paper. The lumping details of the naphtha feed and reaction scheme of the reaction model are given. The process model is composed of the reforming reaction model with catalyst deactivation, the furnace model and the separator model, which is capable of capturing the major dynamics that occurs in this process system. Dynamic simulations are performed based on Gear numerical algorithm and method of lines (MOL), a numerical technique dealing with partial differential equations (PDEs). The results of simulation are also presented. Dynamic responses caused by disturbances in the process system can be correctly predicted through simulations.展开更多
ZrO 2-Al 2O 3 composite oxides and supported Ni catalysts were prepared, and characterized by N 2 adsorption /desorption, X-ray diffraction(XRD) an d X-ray photoelectron spectroscopy(XPS) techniques. The catalytic...ZrO 2-Al 2O 3 composite oxides and supported Ni catalysts were prepared, and characterized by N 2 adsorption /desorption, X-ray diffraction(XRD) an d X-ray photoelectron spectroscopy(XPS) techniques. The catalytic performance and carbon deposition was also investigated. This mesoporous composite oxide is shown to be a promising catalyst support. An increase in the catalytic activity and stability of methane and carbon dioxide reforming reaction was resulted from the zirconia addition, especially at 5wt% ZrO 2 content. The Ni catalyst supported ZrO 2-Al 2O 3 has a strong resistance to sintering and the carbon deposition in a relatively long-term reaction.展开更多
A naphtha catalytic reforming unit with four reactors connected in series is analyzed. A physicalmodel is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamicsequations are sele...A naphtha catalytic reforming unit with four reactors connected in series is analyzed. A physicalmodel is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamicsequations are selected to describe the naphtha catalytic reforming reaction characteristics based on idealiz-ing the complex naphtha mixture to represent the paraffin, naphthene, and aromatic groups with individualcompounds. The simulation results based on above models agree very well with actual operating data ofprocess unit.展开更多
The experiments of two-stage pyrolysis and catalytic reforming of high impact polystyrene (HIPS) containing brominated flame retardants and antimony trioxide (Sb2O3) were conducted in the presence of four zeolite cata...The experiments of two-stage pyrolysis and catalytic reforming of high impact polystyrene (HIPS) containing brominated flame retardants and antimony trioxide (Sb2O3) were conducted in the presence of four zeolite catalysts in order to remove the bromine content from the derived oil products. The four catalysts used were natural zeolite (NZ), iron oxide loaded natural zeolite (Fe-NZ), HY zeolite (YZ) and iron oxide loaded HY zeolite (Fe-NZ). The effect of catalyst types on the product yield, the gas and oil product composition and the debromination efficiency of the oil products was evaluated in details. The results showed that the loading of iron oxides reduced the pore size and surface areas of natural zeolite and HY zeolite. Regardless of the presence of catalysts, the single-ring aromatic compounds were the main components of the oil products, such as ethylbenzene, toluene, styrene and cumene. Meanwhile, when YZ and Fe-YZ were used, the two-ring and multi-ring aromatic compounds in the oils, as well as the yield of gas products, significantly increased at the expense of valuable single-ring aromatic compounds. Furthermore, in terms of the debromination performance of the oil products, Fe-NZ and Fe-YZ were better than NZ and YZ, duo to the loading of iron oxide, which could react with derived HBr and then remove more bromine from the oil products.展开更多
A naphtha catalytic reforming unit with four reactors in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to ...A naphtha catalytic reforming unit with four reactors in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to describe the naphtha catalytic reforming reactions characteristics based on idealizing the complex naphtha mixture by representing the paraffin, naphthene, and aromatic groups by single compounds. The simulation results based above models agree very well with actual operation unit data.展开更多
This article makes an analysis on the major technical difficulties encountered in the process of revamping and expanding the capacity of the continuous catalytic reforming (CCR) unit from 600 kt/a to 800 kt/a at Tia...This article makes an analysis on the major technical difficulties encountered in the process of revamping and expanding the capacity of the continuous catalytic reforming (CCR) unit from 600 kt/a to 800 kt/a at Tianjin Petrochemical Company. The requirements for expanding the CCR unit capacity to 800 kt/a have been met through adopting the low carbon-make PS-Ⅵ catalyst, properly lowering the RONC of the reformate, and appropriately retrofitting the towers and furnaces while keeping the reaction system, the catalyst regeneration system and the recycle hydrogen compressor intact. The calibration results have revealed that the liquid yield of reformate products, the octane rating of reformate, the pure hydrogen yield, the aromatics yield and the overall conversion rate all have met the revamp design targets.展开更多
The current status of catalytic reforming in China is reviewed and a forecastof the development in a couple of years or a decade is given. Distinguished from the past decade,the future trend will be focused on revamps...The current status of catalytic reforming in China is reviewed and a forecastof the development in a couple of years or a decade is given. Distinguished from the past decade,the future trend will be focused on revamps, expansions, higher severity, diversified feeds,combination with other processes for higher product quality, and novel catalysts and equipment.展开更多
A new continuous catalytic reforming model was configured by using a molecule-based reactor module. Themodel was based on the Sinopec Research Institute of Petroleum Processing Co., Ltd. continuous catalytic reformer ...A new continuous catalytic reforming model was configured by using a molecule-based reactor module. Themodel was based on the Sinopec Research Institute of Petroleum Processing Co., Ltd. continuous catalytic reformer fullmodel, and was reduced to a size of 157 naphtha molecules (C1−C12) that underwent 764 reactions. The new model inheritedthe advantages of the original model, and had better solving performance and flexibility owing to support by the AspenHYSYS environment. Typical commercial plant data were selected for model validation, which showed advantages in theaccuracy of detailed predictions and the range of its application. In addition, the solving time was reduced from minutes toseconds. Therefore, the simplified model proved to be feasible for industrial application.展开更多
The continual growth in transportation fuels and more strict environmental legislations have led to immense interest in developing green biomass energy. In this work, a proposed catalytic transformation of oxygenated ...The continual growth in transportation fuels and more strict environmental legislations have led to immense interest in developing green biomass energy. In this work, a proposed catalytic transformation of oxygenated organic compounds (related to bio-oil) into pure hydrogen was desighed, involving the catalytic reforming of oxygenated organic compounds to hydrogen- rich mixture gas followed by the conversion of CO to CO2 via the water gas reaction and the removal of CO2. The optimization of the different reforming catalyst, the reaction conditions as well as various sources of oxygenated organic compounds were investigated in detail. The production of pure hydrogen, with the H2 content up to 99.96% and the conversion of 97.1%, was achieved by the integrated catalytic transformation. The reaction pathways were addressed based on the investigation of decomposition, catalytic reforming, and the water gas reaction.展开更多
In this article, a multiobjective optimization strategy for an industrial naphtha continuous catalytic reform-ing process that aims to obtain aromatic products is proposed. The process model is based on a 20-lumped ki...In this article, a multiobjective optimization strategy for an industrial naphtha continuous catalytic reform-ing process that aims to obtain aromatic products is proposed. The process model is based on a 20-lumped kinetics re-action network and has been proved to be quite effective in terms of industrial application. The primary objectives in-clude maximization of yield of the aromatics and minimization of the yield of heavy aromatics. Four reactor inlet tem-peratures, reaction pressure, and hydrogen-to-oil molar ratio are selected as the decision variables. A genetic algorithm, which is proposed by the authors and named as the neighborhood and archived genetic algorithm (NAGA), is applied to solve this multiobjective optimization problem. The relations between each decision variable and the two objectives are also proposed and used for choosing a suitable solution from the obtained Pareto set.展开更多
基金supported by the National Natural Science Foundation of China (51472034)the Key Laboratory Development Fund of Hubei Province (202305904)the Cooperation Project of Petro China Tahe Oilfield Company (2021H10005)。
文摘MnO_(2)/Melem composites were synthesized with MnO_(2)nanoparticles loaded onto the Melem using the hydrothermal method.As raw materials for C and N carriers,Melem was prepared from melamine roasted at 354℃,and KMnO_(4)as a raw material for Mn,MnO_(2)nanoparticles were prepared using the hydrothermal synthesis of KMnO_(4).Scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD),and a laser particle size analyzer were used for structural characterization,and the catalytic oxidation performance of the heavy oil was investigated at different reaction temperatures(100℃to 180℃)using MnO_(2)/Melem with an oxidant and donor protonic acid.The results showed that the synthesizedβ-MnO_(2)nanoparticles were successfully loaded onto the Melem surface;the oil samples before and after the reaction at different temperatures were subjected to SARA analysis using Fourier transform infrared(FT-IR),elemental analysis,gas chromatography-mass spectrometry(GC-MS)and viscosity tests,respectively.It was determined that the hydrocarbons in the crude oil were converted to heavy mass by oxidation reactions with the oxidant mainly through a low-temperature oxidation process below 140℃in the heavy oil when the temperature exceeds 140℃,in addition to the oxidation reaction with the oxidant,a cleavage reaction in the carbon chain occurs to form hydrocarbon substances with lower molecular weights.
文摘The rules on regulating aromatic compounds production was investigated by aqueous cat- alytic reforming of sorbitol. It was found that aromatics, ketones, furans, organic acids were main compounds in organic phase. The obvious effect of metal content showed that the highest carbon selectivity of aromatics was 34.36% when 3wt% Ni content was loaded on HZSM-5 zeolite modified by MCM-41. However, it was decreased only to 4.82% when Ni content was improved to 20wt%. Meanwhile, different reaction parameters also displayed important impacts on carbon selectivity. It was improved with the increase of temperature, while it was decreased as liquid hourly space velocity and hydrogen pressure was increased. The results showed that appropriate higher temperature, longer contact time and lower hy- drogen pressure were in favor of aromatics information, which suggested a feasible process to solve energy crisis.
基金This work was supported by the National Basic Research Program of Ministry of Science and Technology of China (No.2007CB210206), the National High Tech Research and Development Program (No.2009AA05Z435), and the National Natural Science Foundation of China (No.50772107).
文摘We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass. The product gas was a mixed gas containing 72%H2, 26%CO2, 1.9%CO, and a trace amount of CH4. It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%). The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H20. In addition, the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.
基金ACKNOWLEDGMENTS This work was supported by the National Basic Research Program of Ministry of Science and Technology of China (No.2007CB210206), the National High Technology Research and Development Program (No.2009AA05Z435), the National Natural Science Foundation of China (No.50772107), and the Demonstration and Applied Investigation of Biomass Clean Energy Base (No.2007-15).
文摘High-efficient production of hydrogen from bio-oil was performed by electrochemical catalytic reforming method over the CoZnAl catalyst. The influence of current on the hydrogen yield, carbon conversion, and products distribution were investigated. Both the hydrogen yield and carbon conversion were remarkably enhanced by the current through the catalyst, reaching hydrogen yield of 70% and carbon conversion of 85% at a lower reforming temperature of 500 ℃. The influence of current on the properties of the CoZnAl catalyst was also characterized by X-ray diffraction, X-ray photoelectron spectroscopy, thermal gravimetric analysis, and Brunauer-Emmett-Teller measurements. The thermal electrons would play an important role in promoting the reforming reactions of the oxygenated-organic compounds in the bio-oil.
文摘The reforming of anisole (as model compound of bio-oil) was performed over the NiCuZn-Al2O3 catalyst, using a recently-developed electrochemical catalytic reforming (ECR). The influence of-the current on the anisole reforming in the ECR process has been investigated. It was observed that anisole reforming was significantly enhanced by the current approached over the catalyst in the electrochemical catalytic process, which was due to the non-uniform temperature distribution in the catalytic bed and the role of the thermal electrons originating from the electrified wire. The maximum hydrogen yield of 88.7% with a carbon conversion of 98.3% was obtained through the ECR reforming of anisole at 700℃ and 4 A. X-ray diffraction was employed to characterize catalyst features and their alterations in the anisole reforming. The apparent activation energy for the anisole reforming is calculated as 99.54 kJ/mol, which is higher than ethanol, acetic acid, and light fraction of bio-oil. It should owe to different physical and chemical properties and reforming mechanism for different hydrocarbons.
基金Supported by the National Natural Science Foundation of China (No.60421002).
文摘A new 18-lump kinetic model for naphtha catalytic reforming reactions is discussed. By developing this model as a user module, a whole industrial continuous catalytic reforming process is simulated on Aspen plus plat-form. The technique utilizes the strong databases, complete sets of modules, and flexible simulation tools of the Aspen plus system and retains the characteristics of the proposed kinetic model. The calculated results are in fair agreement with the actual operating data. Based on the model of the whole reforming process, the process is opti-mized and the optimization results are tested in the actual industrial unit for about two months. The test shows that the process profit increases about 1000yuan·h-1 averagely, which is close to the calculated result.
基金supported by the Jiangxi Provincial Department of Education
文摘The nickel-based catalysts were prepared by the sol-gel method and used for the CH4 reforming with CO2. The effects of the sol-gel method on the specific surface area, catalytic activity, desorption, and reduction performances of catalysts were investigated with BET, TPR, and TPD. Compared with the catalyst prepared by the impregnation method, the results indicated that the catalysts prepared by the sol-gel method had larger specific surface area, showing higher catalytic activities and exhibiting perfect desorption and reduction performances. In addition, the modification effects of adding La were studied, and it was found that the 0.75NLBT catalyst constituted of 5wt.%Ni-0.75wt.%La was optimal.
基金supported by the Cultivation Project of Major Achievements Transformation of Sichuan Provincial Education Department(#14CZ0005)supported by the Natural Science Foundation of China(#21406184)
文摘Hydrogen production by catalytic steam reforming of the bio-oil, naphtha, and CH4 was investigated over a novel metal-doped catalyst of (Ca24Al28O64)^4+·4O^-/Mg (C12A7-Mg). The catalytic steam reforming was investigated from 250 to 850℃ in the fixed-bed continuous flow reactor. For the reforming of bio-oil, the yield of hydrogen of 80% was obtained at 750℃, and the maximum carbon conversion is nearly close to 95% under the optimum steam reforming condition. For the reforming of naphtha and CH4, the hydrogen yield and carbon conversion are lower than that of bio-oil at the same temperature. The characteristics of catalyst were also investigated by XPS. The catalyst deactivation was mainly caused by the deposition of carbon in the catalytic steam reforming process.
文摘A first principles-based dynamic model for a continuous catalyst regeneration (CCR) platforming process, the UOP commercial naphtha catalytic reforming process, is developed in this paper. The lumping details of the naphtha feed and reaction scheme of the reaction model are given. The process model is composed of the reforming reaction model with catalyst deactivation, the furnace model and the separator model, which is capable of capturing the major dynamics that occurs in this process system. Dynamic simulations are performed based on Gear numerical algorithm and method of lines (MOL), a numerical technique dealing with partial differential equations (PDEs). The results of simulation are also presented. Dynamic responses caused by disturbances in the process system can be correctly predicted through simulations.
文摘ZrO 2-Al 2O 3 composite oxides and supported Ni catalysts were prepared, and characterized by N 2 adsorption /desorption, X-ray diffraction(XRD) an d X-ray photoelectron spectroscopy(XPS) techniques. The catalytic performance and carbon deposition was also investigated. This mesoporous composite oxide is shown to be a promising catalyst support. An increase in the catalytic activity and stability of methane and carbon dioxide reforming reaction was resulted from the zirconia addition, especially at 5wt% ZrO 2 content. The Ni catalyst supported ZrO 2-Al 2O 3 has a strong resistance to sintering and the carbon deposition in a relatively long-term reaction.
文摘A naphtha catalytic reforming unit with four reactors connected in series is analyzed. A physicalmodel is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamicsequations are selected to describe the naphtha catalytic reforming reaction characteristics based on idealiz-ing the complex naphtha mixture to represent the paraffin, naphthene, and aromatic groups with individualcompounds. The simulation results based on above models agree very well with actual operating data ofprocess unit.
文摘The experiments of two-stage pyrolysis and catalytic reforming of high impact polystyrene (HIPS) containing brominated flame retardants and antimony trioxide (Sb2O3) were conducted in the presence of four zeolite catalysts in order to remove the bromine content from the derived oil products. The four catalysts used were natural zeolite (NZ), iron oxide loaded natural zeolite (Fe-NZ), HY zeolite (YZ) and iron oxide loaded HY zeolite (Fe-NZ). The effect of catalyst types on the product yield, the gas and oil product composition and the debromination efficiency of the oil products was evaluated in details. The results showed that the loading of iron oxides reduced the pore size and surface areas of natural zeolite and HY zeolite. Regardless of the presence of catalysts, the single-ring aromatic compounds were the main components of the oil products, such as ethylbenzene, toluene, styrene and cumene. Meanwhile, when YZ and Fe-YZ were used, the two-ring and multi-ring aromatic compounds in the oils, as well as the yield of gas products, significantly increased at the expense of valuable single-ring aromatic compounds. Furthermore, in terms of the debromination performance of the oil products, Fe-NZ and Fe-YZ were better than NZ and YZ, duo to the loading of iron oxide, which could react with derived HBr and then remove more bromine from the oil products.
文摘A naphtha catalytic reforming unit with four reactors in series is analyzed. A physical model is proposed to describe the catalytic reforming radial flow reactor. Kinetics and thermodynamics equations are selected to describe the naphtha catalytic reforming reactions characteristics based on idealizing the complex naphtha mixture by representing the paraffin, naphthene, and aromatic groups by single compounds. The simulation results based above models agree very well with actual operation unit data.
文摘This article makes an analysis on the major technical difficulties encountered in the process of revamping and expanding the capacity of the continuous catalytic reforming (CCR) unit from 600 kt/a to 800 kt/a at Tianjin Petrochemical Company. The requirements for expanding the CCR unit capacity to 800 kt/a have been met through adopting the low carbon-make PS-Ⅵ catalyst, properly lowering the RONC of the reformate, and appropriately retrofitting the towers and furnaces while keeping the reaction system, the catalyst regeneration system and the recycle hydrogen compressor intact. The calibration results have revealed that the liquid yield of reformate products, the octane rating of reformate, the pure hydrogen yield, the aromatics yield and the overall conversion rate all have met the revamp design targets.
文摘The current status of catalytic reforming in China is reviewed and a forecastof the development in a couple of years or a decade is given. Distinguished from the past decade,the future trend will be focused on revamps, expansions, higher severity, diversified feeds,combination with other processes for higher product quality, and novel catalysts and equipment.
基金The authors acknowledge collaboration with and support from AspenTech via the National Key R&D Program of China(2021YFA1501201).
文摘A new continuous catalytic reforming model was configured by using a molecule-based reactor module. Themodel was based on the Sinopec Research Institute of Petroleum Processing Co., Ltd. continuous catalytic reformer fullmodel, and was reduced to a size of 157 naphtha molecules (C1−C12) that underwent 764 reactions. The new model inheritedthe advantages of the original model, and had better solving performance and flexibility owing to support by the AspenHYSYS environment. Typical commercial plant data were selected for model validation, which showed advantages in theaccuracy of detailed predictions and the range of its application. In addition, the solving time was reduced from minutes toseconds. Therefore, the simplified model proved to be feasible for industrial application.
文摘The continual growth in transportation fuels and more strict environmental legislations have led to immense interest in developing green biomass energy. In this work, a proposed catalytic transformation of oxygenated organic compounds (related to bio-oil) into pure hydrogen was desighed, involving the catalytic reforming of oxygenated organic compounds to hydrogen- rich mixture gas followed by the conversion of CO to CO2 via the water gas reaction and the removal of CO2. The optimization of the different reforming catalyst, the reaction conditions as well as various sources of oxygenated organic compounds were investigated in detail. The production of pure hydrogen, with the H2 content up to 99.96% and the conversion of 97.1%, was achieved by the integrated catalytic transformation. The reaction pathways were addressed based on the investigation of decomposition, catalytic reforming, and the water gas reaction.
基金Supported by the National Natural Science Foundation of China (No.60421002).
文摘In this article, a multiobjective optimization strategy for an industrial naphtha continuous catalytic reform-ing process that aims to obtain aromatic products is proposed. The process model is based on a 20-lumped kinetics re-action network and has been proved to be quite effective in terms of industrial application. The primary objectives in-clude maximization of yield of the aromatics and minimization of the yield of heavy aromatics. Four reactor inlet tem-peratures, reaction pressure, and hydrogen-to-oil molar ratio are selected as the decision variables. A genetic algorithm, which is proposed by the authors and named as the neighborhood and archived genetic algorithm (NAGA), is applied to solve this multiobjective optimization problem. The relations between each decision variable and the two objectives are also proposed and used for choosing a suitable solution from the obtained Pareto set.