The stiffness matrix of semi-rigidly connected composite beams considering interface slip was established and the calculation method for elastic seismic response of composite frame was derived.The corresponding calcul...The stiffness matrix of semi-rigidly connected composite beams considering interface slip was established and the calculation method for elastic seismic response of composite frame was derived.The corresponding calculation programs were developed.Introducing the dimensionless quantities that were related to the connector shearing stiffness and the joint rotation stiffness,the influences of interface slip and semi-rigid joint on composite frame were transferred to quantitative parameter analysis,taking account of cross sectional properties,materials and linear stiffness of composite beam synthetically.Based on the calculation programs,free vibration frequencies and seismic responses of semi-rigid joint steel-concrete composite frame considering interface slip were calculated.The influences of interface slip and semi rigid joint on dynamic characteristics and seismic response were analyzed and the seismic design advices were presented.The results show that the interface slip decreases the free vibration frequencies and increase the seismic responses of composite frame.The semi-rigid joint reduces the free vibration frequencies and increases seismic responses of composite frame compared with rigid joint.With the increase of joint rotational stiffness,the elastic seismic responses of composite frame increase firstly and then decrease.The effects are related to the ratio of joint rotation stiffness to linear stiffness of composite beam.展开更多
New and high transparent structural element, steel-glass composite beam was developed in respect to fabrication, static-structural and architectural criteria and consists of steel flanges and glass web assembled toget...New and high transparent structural element, steel-glass composite beam was developed in respect to fabrication, static-structural and architectural criteria and consists of steel flanges and glass web assembled together by semi-rigid polymer adhesive, which is the key element of whole composite system. These beams can be used mainly as members of high transparent roof or floor structure as well as stiffening fins for large area glass facades. This paper deals with experimental research performed at CTU (Czech Technical University) Prague, which started by adhesive selection and initial material tests by ISO527, continued via small-scale steel-glass connection tests and graduated by full-scale tests of hybrid beams with the span of 4 m. Generalized results of these experiments, analytical and numerical studies serve as device, how to accurately predict the behavior of the beam, describe the stress distribution along the cross section and safely and economically design such a kind of structure with semi-rigid shear connection, made by polymer adhesive.展开更多
A new type of semi-rigid thin-walled steel-concrete composite beam-to-column joint has been proposed in this paper.Five semi-rigid composite beam-to-column joint specimens subjected to hogging moments under monotonic ...A new type of semi-rigid thin-walled steel-concrete composite beam-to-column joint has been proposed in this paper.Five semi-rigid composite beam-to-column joint specimens subjected to hogging moments under monotonic loading were tested to study the static behavior of this new type of joint.The main variable parameters for the five joint specimens were the longitudinal reinforcement ratio and the joint type.The experimental results designated that the magnitude of extension of the longitudinal reinforcement is the most important factor that influenced the moment-rotation characteristic of the new type of joint.The concrete slabs could resist 3.8%-19.1% of the total shear load applied to the cross-sections near the beam-to-column connection.The edge stiffened elements,such as the flange of the lipped I-section thin-walled steel beam,were capable of having considerable inelastic deformation capacity although they had comparatively large width-to-thickness ratios.The shear failure of the concrete cantilever edge strip must be taken into account in practical design because it has significant influence on the anchorage of the longitudinal reinforcement in the new type of external joints.展开更多
Tenon-mortise joint is widely used in traditional timber structures around the world.This paper summarizes the results of an experimental study of the structural behavior of tenon-mortise joints made with glulam and C...Tenon-mortise joint is widely used in traditional timber structures around the world.This paper summarizes the results of an experimental study of the structural behavior of tenon-mortise joints made with glulam and CNC technology instead of traditional material and manual work.30 full-scale tenonmortise joints were manufactured and tested under monotonic loading,and the effects of dimension,shape,processing error and adhesive were evaluated.It was found that the round rectangular shaped tenon-mortise joints were comparable with traditional joints in terms of structural performance,but were time and labor saving.The variability of the proposed tenon-mortise joints was lower,which would benefit the design value.Applying adhesive between tenon and mortise increased the average stiffness by 4.3 times and average moment capacity by 27.4%,respectively.The gaps between wood members had little effect on the capacity and stiffness in monotonic bending but may influence the energy dissipation ability in cyclic bending.This study showed the feasibility of combining the traditional joinery method with modern wood products and manufacturing technology,which may promote the application of tenon-mortise joints in modern timber structures.展开更多
Joints play an important role in providing ductility for steel-composite structures subject to extreme loading conditions,such as blast,fire and impact.Due to sound energy dissipation capability and fabrication effici...Joints play an important role in providing ductility for steel-composite structures subject to extreme loading conditions,such as blast,fire and impact.Due to sound energy dissipation capability and fabrication efficiency,semi-rigid joints have increasingly received attention during the last decade.This paper presents a component approach for modeling semi-rigid beam-to-column joints based on Eurocode3,where the post-elastic response,including component strain hardening and ultimate rotational capacity,is also considered.Failure criteria are defined based on the ultimate deformation capacity of components and bolt-rows.The model enables a direct integration of joint response into global frame models with the consideration of axial deformability,such that the interaction between bending moment and axial force within the joints can be realistically captured.In addition,elevated temperature can be considered in the joint model via the degradation of the component response.Through comparisons with available test data,the joint model is shown to have good accuracy,and the failure criteria are found to be reliable yet conservative.The strain hardening response of components is shown to have significant influence on the ultimate bending capacity of the joints,while neglecting it usually leads to a conservative prediction.展开更多
基金Project(50778177) supported by the National Natural Science Foundation of ChinaProject(07JJ1009) supported by the Outstanding Younger Fund of Hunan Province,China
文摘The stiffness matrix of semi-rigidly connected composite beams considering interface slip was established and the calculation method for elastic seismic response of composite frame was derived.The corresponding calculation programs were developed.Introducing the dimensionless quantities that were related to the connector shearing stiffness and the joint rotation stiffness,the influences of interface slip and semi-rigid joint on composite frame were transferred to quantitative parameter analysis,taking account of cross sectional properties,materials and linear stiffness of composite beam synthetically.Based on the calculation programs,free vibration frequencies and seismic responses of semi-rigid joint steel-concrete composite frame considering interface slip were calculated.The influences of interface slip and semi rigid joint on dynamic characteristics and seismic response were analyzed and the seismic design advices were presented.The results show that the interface slip decreases the free vibration frequencies and increase the seismic responses of composite frame.The semi-rigid joint reduces the free vibration frequencies and increases seismic responses of composite frame compared with rigid joint.With the increase of joint rotational stiffness,the elastic seismic responses of composite frame increase firstly and then decrease.The effects are related to the ratio of joint rotation stiffness to linear stiffness of composite beam.
文摘New and high transparent structural element, steel-glass composite beam was developed in respect to fabrication, static-structural and architectural criteria and consists of steel flanges and glass web assembled together by semi-rigid polymer adhesive, which is the key element of whole composite system. These beams can be used mainly as members of high transparent roof or floor structure as well as stiffening fins for large area glass facades. This paper deals with experimental research performed at CTU (Czech Technical University) Prague, which started by adhesive selection and initial material tests by ISO527, continued via small-scale steel-glass connection tests and graduated by full-scale tests of hybrid beams with the span of 4 m. Generalized results of these experiments, analytical and numerical studies serve as device, how to accurately predict the behavior of the beam, describe the stress distribution along the cross section and safely and economically design such a kind of structure with semi-rigid shear connection, made by polymer adhesive.
基金Sponsored by the National Natural Science Foundation of China (Grant No.50478027)
文摘A new type of semi-rigid thin-walled steel-concrete composite beam-to-column joint has been proposed in this paper.Five semi-rigid composite beam-to-column joint specimens subjected to hogging moments under monotonic loading were tested to study the static behavior of this new type of joint.The main variable parameters for the five joint specimens were the longitudinal reinforcement ratio and the joint type.The experimental results designated that the magnitude of extension of the longitudinal reinforcement is the most important factor that influenced the moment-rotation characteristic of the new type of joint.The concrete slabs could resist 3.8%-19.1% of the total shear load applied to the cross-sections near the beam-to-column connection.The edge stiffened elements,such as the flange of the lipped I-section thin-walled steel beam,were capable of having considerable inelastic deformation capacity although they had comparatively large width-to-thickness ratios.The shear failure of the concrete cantilever edge strip must be taken into account in practical design because it has significant influence on the anchorage of the longitudinal reinforcement in the new type of external joints.
文摘Tenon-mortise joint is widely used in traditional timber structures around the world.This paper summarizes the results of an experimental study of the structural behavior of tenon-mortise joints made with glulam and CNC technology instead of traditional material and manual work.30 full-scale tenonmortise joints were manufactured and tested under monotonic loading,and the effects of dimension,shape,processing error and adhesive were evaluated.It was found that the round rectangular shaped tenon-mortise joints were comparable with traditional joints in terms of structural performance,but were time and labor saving.The variability of the proposed tenon-mortise joints was lower,which would benefit the design value.Applying adhesive between tenon and mortise increased the average stiffness by 4.3 times and average moment capacity by 27.4%,respectively.The gaps between wood members had little effect on the capacity and stiffness in monotonic bending but may influence the energy dissipation ability in cyclic bending.This study showed the feasibility of combining the traditional joinery method with modern wood products and manufacturing technology,which may promote the application of tenon-mortise joints in modern timber structures.
基金the financial support of the Research Fund for Coal and Steel of the European Community within project ROBUSTFIRE:“Robustness of Car Parks against Localised Fire,”Grant No RFSR-CT-2008-00036The related discussions and input of our collaborators from the University of Liege,University of Coimbra,CSTB,Greisch Ingenierie,and CTICM France are gratefully acknowledged.
文摘Joints play an important role in providing ductility for steel-composite structures subject to extreme loading conditions,such as blast,fire and impact.Due to sound energy dissipation capability and fabrication efficiency,semi-rigid joints have increasingly received attention during the last decade.This paper presents a component approach for modeling semi-rigid beam-to-column joints based on Eurocode3,where the post-elastic response,including component strain hardening and ultimate rotational capacity,is also considered.Failure criteria are defined based on the ultimate deformation capacity of components and bolt-rows.The model enables a direct integration of joint response into global frame models with the consideration of axial deformability,such that the interaction between bending moment and axial force within the joints can be realistically captured.In addition,elevated temperature can be considered in the joint model via the degradation of the component response.Through comparisons with available test data,the joint model is shown to have good accuracy,and the failure criteria are found to be reliable yet conservative.The strain hardening response of components is shown to have significant influence on the ultimate bending capacity of the joints,while neglecting it usually leads to a conservative prediction.