期刊文献+
共找到89,530篇文章
< 1 2 250 >
每页显示 20 50 100
On Klein tunneling of low-frequency elastic waves in hexagonal topological plates
1
作者 Yuxin YAO Yuansheng MA +4 位作者 Fang HONG Kai ZHANG Tingting WANG Haijun PENG Zichen DENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第7期1139-1154,共16页
Incident particles in the Klein tunnel phenomenon in quantum mechanics can pass a very high potential barrier.Introducing the concept of tunneling into the analysis of phononic crystals can broaden the application pro... Incident particles in the Klein tunnel phenomenon in quantum mechanics can pass a very high potential barrier.Introducing the concept of tunneling into the analysis of phononic crystals can broaden the application prospects.In this study,the structure of the unit cell is designed,and the low frequency(<1 k Hz)valley locked waveguide is realized through the creation of a phononic crystal plate with a topological phase transition interface.The defect immunity of the topological waveguide is verified,that is,the wave can propagate along the original path in the cases of impurities and disorder.Then,the tunneling phenomenon is introduced into the topological valley-locked waveguide to analyze the wave propagation,and its potential applications(such as signal separators and logic gates)are further explored by designing phononic crystal plates.This research has broad application prospects in information processing and vibration control,and potential applications in other directions are also worth exploring. 展开更多
关键词 topological metamaterial elastic wave Klein tunneling valley-locked waveguide
下载PDF
Surface evolution of thermoelectric material KCu_(4)Se_(3) explored by scanning tunneling microscopy
2
作者 夏玉敏 马妮 +7 位作者 蔡德胜 刘宇舟 谷易通 于淦 霍思宇 庞文慧 肖翀 秦胜勇 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期422-427,共6页
Novel two-dimensional thermoelectric materials have attracted significant attention in the field of thermoelectric due to their low lattice thermal conductivity.A comprehensive understanding of their microscopic struc... Novel two-dimensional thermoelectric materials have attracted significant attention in the field of thermoelectric due to their low lattice thermal conductivity.A comprehensive understanding of their microscopic structures is crucial for driving further the optimization of materials properties and developing novel functional materials.Here,by using in situ scanning tunneling microscopy,we report the atomic layer evolution and surface reconstruction on the cleaved thermoelectric material KCu_(4)Se_(3) for the first time.We clearly revealed each atomic layer,including the naturally cleaved K atomic layer,the intermediate Se^(2-)atomic layer,and the Se^(-)atomic layer that emerges in the thermodynamic-stable state.Departing from the maj ority of studies that predominantly concentrate on macroscopic measurements of the charge transport,our results reveal the coexistence of potassium disorder and complex reconstructed patterns of selenium,which potentially influences charge carrier and lattice dynamics.These results provide direct insight into the surface microstructures and evolution of KCu_(4)Se_(3),and shed useful light on designing functional materials with superior performance. 展开更多
关键词 THERMOELECTRIC KCu_(4)Se_(3) scanning tunneling microscopy(STM) EVOLUTION
下载PDF
Tunneling Electrons Triggered Energy Transfer between Coherently Coupled Donor-Acceptor Molecules
3
作者 Huifang Wang 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2024年第4期497-504,I0093,I0094,共10页
Energy transfer is ubiquitous in natural and artificial lightharvesting systems,and coherent energy transfer,a highly efficient energy transfer process,has been accepted to play a vital role in such systems.However,th... Energy transfer is ubiquitous in natural and artificial lightharvesting systems,and coherent energy transfer,a highly efficient energy transfer process,has been accepted to play a vital role in such systems.However,the energy oscillation of coherent energy transfer is exceedingly difficult to capture because of its evanescence due to the interaction with a thermal environment.Here a microscopic quantum model is used to study the time evolution of electrons triggered energy transfer between coherently coupled donoracceptor molecules in scanning tunneling microscope(STM).A series of topics in the plasmonic nanocavity(PNC)coupled donor-acceptor molecules system are discussed,including resonant and nonresonant coherent energy transfer,dephasing assisted energy transfer,PNC coupling strength dependent energy transfer,Fano resonance of coherently coupled donor-acceptor molecules,and polariton-mediated energy transfer. 展开更多
关键词 Energy transfer Coherent energy transfer Scanning tunneling microcopy induced luminescence Plasmonic nanocavity Quantum master equation DEPHASING Fano resonance Polariton-mediated energy transfer
下载PDF
On the critical particle size of soil with clogging potential in shield tunneling 被引量:5
4
作者 Shuying Wang Zihao Zhou +3 位作者 Pengfei Liu Zhao Yang Qiujing Pan Weizhong Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第2期477-485,共9页
Shield tunneling is easily obstructed by clogging in clayey strata with small soil particles.However,soil clogging rarely occurs in strata with coarse-grained soils.Theoretically,a critical particle size of soils shou... Shield tunneling is easily obstructed by clogging in clayey strata with small soil particles.However,soil clogging rarely occurs in strata with coarse-grained soils.Theoretically,a critical particle size of soils should exist,below which there is a high risk of soil clogging in shield tunneling.To determine the critical particle size,a series of laboratory tests was carried out with a large-scale rotary shear apparatus to measure the tangential adhesion strength of soils with different particle sizes and water contents.It was found that the tangential adhesion strength at the soilesteel interface gradually increased linearly with applied normal pressure.When the particle size of the soil specimen was less than 0.15 mm,the interfacial adhesion force first increased and then decreased as the water content gradually increased;otherwise,the soil specimens did not manifest any interfacial adhesion force.The amount of soil mass adhering to the steel disc was positively correlated with the interfacial adhesion force,thus the interfacial adhesion force was adopted to characterize the soil clogging risk in shield tunneling.The critical particle size of soils causing clogging was determined to be 0.15 mm.Finally,the generation mechanism of interfacial adhesion force was explored for soils with different particle sizes to explain the critical particle size of soil with clogging risk in shield tunneling. 展开更多
关键词 Shield tunneling Soil clogging ADHESION Critical particle size
下载PDF
Melatonin,tunneling nanotubes,mesenchymal cells,and tissue regeneration 被引量:3
5
作者 Francesca Luchetti Silvia Carloni +2 位作者 Maria G.Nasoni Russel J.Reiter Walter Balduini 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第4期760-762,共3页
Mesenchymal stem cells are multipotent stem cells that reside in many human tissues and organs.Mesenchymal stem cells are widely used in experimental and clinical regenerative medicine due to their capability to trans... Mesenchymal stem cells are multipotent stem cells that reside in many human tissues and organs.Mesenchymal stem cells are widely used in experimental and clinical regenerative medicine due to their capability to transdifferentiate into various lineages.However,when transplanted,they lose part of their multipotency and immunomodulatory properties,and most of them die after injection into the damaged tissue.In this review,we discuss the potential utility of melatonin in preserving mesenchymal stem cells’survival and function after transplantation.Melatonin is a pleiotropic molecule regulating critical cell functions including apoptosis,endoplasmic reticulum stress,and autophagy.Melatonin is also synthesized in the mitochondria where it reduces oxidative stress,the opening of the mitochondrial permeability transition pore and the downstream caspase activation,activates uncoupling proteins,and curtails the proinflammatory response.In addition,recent findings showed that melatonin also promotes the formation of tunneling nanotubes and the transfer of mitochondria between cells through the connecting tubules.As mitochondrial dysfunction is a primary cause of mesenchymal stem cells death and senescence and a critical issue for survival after transplantation,we propose that melatonin by favoring mitochondria functionality and their transfer through tunneling nanotubes from healthy to suffering cells could improve mesenchymal stem cellbased therapy in a large number of diseases for which basic and clinical trials are underway. 展开更多
关键词 brain ischemia cell transplantation MELATONIN mesenchymal stem cell MITOCHONDRIA mitochondrial transplantation regenerative therapy SENESCENCE tunneling nanotubes
下载PDF
Analysis of the interaction between bolt-reinforced rock and surface support in tunnels based on convergence-confinement method 被引量:2
6
作者 Zhenyu Sun Dingli Zhang +2 位作者 Qian Fang Yanjuan Hou Nanqi Huangfu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1936-1951,共16页
To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockb... To investigate the interaction of the bolt-reinforced rock and the surface support,an analytical model of the convergence-confinement type is proposed,considering the sequential installation of the fully grouted rockbolts and the surface support.The rock mass is assumed to be elastic-brittle-plastic material,obeying the linear Mohr-Coulomb criterion or the non-linear Hoek-Brown criterion.According to the strain states of the tunnel wall at bolt and surface support installation and the relative magnitude between the bolt length and the plastic depth during the whole process,six cases are categorized upon solving the problem.Each case is divided into three stages due to the different effects of the active rockbolts and the passive surface support.The fictitious pressure is introduced to quantify the threedimensional(3D)effect of the tunnel face,and thus,the actual physical location along the tunnel axis of the analytical section can be considered.By using the bolt-rock strain compatibility and the rocksurface support displacement compatibility conditions,the solutions of longitudinal tunnel displacement and the reaction pressure of surface support along the tunnel axis are obtained.The proposed analytical solutions are validated by a series of 3D numerical simulations.Extensive parametric studies are conducted to examine the effect of the typical parameters of rockbolts and surface support on the tunnel displacement and the reaction pressure of the surface support under different rock conditions.The results show that the rockbolts are more effective in controlling the tunnel displacement than the surface support,which should be installed as soon as possible with a suitable length.For tunnels excavated in weak rocks or with restricted displacement control requirements,the surface support should also be installed or closed timely with a certain stiffness.The proposed method provides a convenient alternative approach for the optimization of rockbolts and surface support at the preliminary stage of tunnel design. 展开更多
关键词 Analytical model Longitudinal tunnel displacement Fictitious pressure Active rockbolts Surface support reaction pressure tunnel design
下载PDF
Probabilistic analysis of tunnel face seismic stability in layered rock masses using Polynomial Chaos Kriging metamodel 被引量:2
7
作者 Jianhong Man Tingting Zhang +1 位作者 Hongwei Huang Daniel Dias 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2678-2693,共16页
Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines... Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines the Upper bound Limit analysis of Tunnel face stability,the Polynomial Chaos Kriging,the Monte-Carlo Simulation and Analysis of Covariance method(ULT-PCK-MA),is proposed to investigate the seismic stability of tunnel faces.A two-dimensional analytical model of ULT is developed to evaluate the virtual support force based on the upper bound limit analysis.An efficient probabilistic analysis method PCK-MA based on the adaptive Polynomial Chaos Kriging metamodel is then implemented to investigate the parameter uncertainty effects.Ten input parameters,including geological strength indices,uniaxial compressive strengths and constants for three rock formations,and the horizontal seismic coefficients,are treated as random variables.The effects of these parameter uncertainties on the failure probability and sensitivity indices are discussed.In addition,the effects of weak layer position,the middle layer thickness and quality,the tunnel diameter,the parameters correlation,and the seismic loadings are investigated,respectively.The results show that the layer distributions significantly influence the tunnel face probabilistic stability,particularly when the weak rock is present in the bottom layer.The efficiency of the proposed ULT-PCK-MA is validated,which is expected to facilitate the engineering design and construction. 展开更多
关键词 tunnel face stability Layered rock masses Polynomial Chaos Kriging(PCK) Sensitivity index Seismic loadings
下载PDF
Development of a simple two-step lithography fabrication process for resonant tunneling diode using air-bridge technology
8
作者 Swagata Samanta Jue Wang Edward Wasige 《Journal of Semiconductors》 EI CAS CSCD 2023年第11期79-82,共4页
This article reports on the development of a simple two-step lithography process for double barrier quantum well(DBQW)InGaAs/AlAs resonant tunneling diode(RTD)on a semi-insulating indium phosphide(InP)substrate using ... This article reports on the development of a simple two-step lithography process for double barrier quantum well(DBQW)InGaAs/AlAs resonant tunneling diode(RTD)on a semi-insulating indium phosphide(InP)substrate using an air-bridge technology.This approach minimizes processing steps,and therefore the processing time as well as the required resources.It is particularly suited for material qualification of new epitaxial layer designs.A DC performance comparison between the proposed process and the conventional process shows approximately the same results.We expect that this novel technique will aid in the recent and continuing rapid advances in RTD technology. 展开更多
关键词 AIR-BRIDGE indium phosphide MICROFABRICATION resonant tunneling diode
下载PDF
Analytical solutions for the restraint effect of isolation piles against tunneling-induced vertical ground displacements
9
作者 Liqiang Cao Xiangsheng Chen +3 位作者 Xing-Tao Lin Dong Su Huangcheng Fang Dechun Lu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2582-2596,共15页
This paper presents a simplified elastic continuum method for calculating the restraint effect of isolation piles on tunneling-induced vertical ground displacement,which can consider not only the relative sliding of t... This paper presents a simplified elastic continuum method for calculating the restraint effect of isolation piles on tunneling-induced vertical ground displacement,which can consider not only the relative sliding of the pile‒soil interface but also the pile rowesoil interaction.The proposed method is verified by comparisons with existing theoretical methods,including the boundary element method and the elastic foundation method.The results reveal the restraining mechanism of the isolation piles on vertical ground displacements due to tunneling,i.e.the positive and negative restraint effects exerted by the isolation piles jointly drive the ground vertical displacement along the depth direction from the original tunneling-induced nonlinear variation situation to a relatively uniform situation.The results also indicate that the stiffness of the pile‒soil interface,including the pile shaft‒surrounding soil interface and pile tip-supporting soil interface,describes the strength of the pile‒soil interaction.The pile rows can confine the vertical ground displacement caused by the tunnel excavation to the inner side of the isolation piles and effectively prevent the vertical ground displacement from expanding further toward the outer side of the isolation piles. 展开更多
关键词 Restraining mechanism Restraint effect Isolation piles Ground displacement tunneling
下载PDF
GaAs-based resonant tunneling diode:Device aspects from design,manufacturing,characterization and applications
10
作者 Swagata Samanta 《Journal of Semiconductors》 EI CAS CSCD 2023年第10期26-35,共10页
This review article discusses the development of gallium arsenide(GaAs)-based resonant tunneling diodes(RTD)since the 1970s.To the best of my knowledge,this article is the first review of GaAs RTD technology which cov... This review article discusses the development of gallium arsenide(GaAs)-based resonant tunneling diodes(RTD)since the 1970s.To the best of my knowledge,this article is the first review of GaAs RTD technology which covers different epitaxialstructure design,fabrication techniques,and characterizations for various application areas.It is expected that the details presented here will help the readers to gain a perspective on the previous accomplishments,as well as have an outlook on the current trends and future developments in GaAs RTD research. 展开更多
关键词 gallium arsenide MICROFABRICATION resonant tunneling devices
下载PDF
A methodology for damage evaluation of underground tunnels subjected to static loading using numerical modeling 被引量:1
11
作者 Shahriyar Heidarzadeh Ali Saeidi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1993-2005,共13页
We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensiti... We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensities.To account for these variations,we utilized a Monte Carlo Simulation(MCS)technique coupled with the finite difference code FLAC^(3D),to conduct two thousand seven hundred numerical simulations of a horseshoe tunnel located within a rock mass with different geological strength index system(GSIs)and subjected to different states of static loading.To quantify the severity of damage within the rock mass,we selected one stress-based(brittle shear ratio(BSR))and one strain-based failure criterion(plastic damage index(PDI)).Based on these criteria,we then developed fragility curves.Additionally,we used mathematical approximation techniques to produce vulnerability functions that relate the probabilities of various damage states to loading intensities for different quality classes of blocky rock mass.The results indicated that the fragility curves we obtained could accurately depict the evolution of the inner and outer shell damage around the tunnel.Therefore,we have provided engineers with a tool that can predict levels of damages associated with different failure mechanisms based on variations in rock mass quality and in situ stress state.Our method is a numerically developed,multi-variate approach that can aid engineers in making informed decisions about the robustness of underground tunnels. 展开更多
关键词 Fragility curves Underground tunnels Vulnerability functions Brittle damage FLAC3D Numerical modeling
下载PDF
Rock mass quality prediction on tunnel faces with incomplete multi-source dataset via tree-augmented naive Bayesian network 被引量:1
12
作者 Hongwei Huang Chen Wu +3 位作者 Mingliang Zhou Jiayao Chen Tianze Han Le Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期323-337,共15页
Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantita... Rock mass quality serves as a vital index for predicting the stability and safety status of rock tunnel faces.In tunneling practice,the rock mass quality is often assessed via a combination of qualitative and quantitative parameters.However,due to the harsh on-site construction conditions,it is rather difficult to obtain some of the evaluation parameters which are essential for the rock mass quality prediction.In this study,a novel improved Swin Transformer is proposed to detect,segment,and quantify rock mass characteristic parameters such as water leakage,fractures,weak interlayers.The site experiment results demonstrate that the improved Swin Transformer achieves optimal segmentation results and achieving accuracies of 92%,81%,and 86%for water leakage,fractures,and weak interlayers,respectively.A multisource rock tunnel face characteristic(RTFC)dataset includes 11 parameters for predicting rock mass quality is established.Considering the limitations in predictive performance of incomplete evaluation parameters exist in this dataset,a novel tree-augmented naive Bayesian network(BN)is proposed to address the challenge of the incomplete dataset and achieved a prediction accuracy of 88%.In comparison with other commonly used Machine Learning models the proposed BN-based approach proved an improved performance on predicting the rock mass quality with the incomplete dataset.By utilizing the established BN,a further sensitivity analysis is conducted to quantitatively evaluate the importance of the various parameters,results indicate that the rock strength and fractures parameter exert the most significant influence on rock mass quality. 展开更多
关键词 Rock mass quality tunnel faces Incomplete multi-source dataset Improved Swin Transformer Bayesian networks
下载PDF
Correction to:Wear mechanism and life prediction of the ripper in a 9‐m‐diameter shield machine tunneling project of the Beijing new airport line in a sand‐pebble stratum
13
《Deep Underground Science and Engineering》 2023年第3期274-274,共1页
Jiang H,Zhu J,Zhang X,Zhang J,Li H,Meng L.Wear mechanism and life prediction of the ripper in a 9‐m‐diameter shield machine tunneling project of the Beijing new airport line in a sand‐pebble stratum.Deep Undergr Sc... Jiang H,Zhu J,Zhang X,Zhang J,Li H,Meng L.Wear mechanism and life prediction of the ripper in a 9‐m‐diameter shield machine tunneling project of the Beijing new airport line in a sand‐pebble stratum.Deep Undergr Sci Eng.2022;1:65‐76.doi:10.1002/dug2.12010. 展开更多
关键词 tunneling mechanism STRATUM
下载PDF
Prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum 被引量:1
14
作者 Fan Wang Xiuli Du Pengfei Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期192-212,共21页
This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of... This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of numerical analyses is performed to examine the effects of cover depth ratio(C/D),tunnel volume loss rate(h t)and volumetric block proportion(VBP)on the characteristics of subsurface settle-ment trough and soil volume loss.Considering the ground loss variation with depth,three modes are deduced from the volumetric deformation responses of the soil above the tunnel crown.Then,analytical solutions to predict subsurface settlement for each mode are presented using stochastic medium theory.The influences of C/D,h t and VBP on the key parameters(i.e.B and N)in the analytical expressions are discussed to determine the fitting formulae of B and N.Finally,the proposed analytical solutions are validated by the comparisons with the results of model test and numerical simulation.Results show that the fitting formulae provide a convenient and reliable way to evaluate the key parameters.Besides,the analytical solutions are reasonable and available in predicting the subsurface settlement induced by shield tunnelling in sandy cobble stratum. 展开更多
关键词 Shield tunnelling Sandy cobble stratum Subsurface settlement Volumetric deformation mode Stochastic medium theory
下载PDF
Numerical analysis of moving train induced vibrations on tunnel,surrounding ground and structure 被引量:1
15
作者 Swati Srivastav Sowmiya Chawla Swapnil Mishra 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期179-192,共14页
This study is focused on the effect of vibration induced by moving trains in tunnels on the surrounding ground and structures.A three-dimensional finite element model is established for a one-track railway tunnel and ... This study is focused on the effect of vibration induced by moving trains in tunnels on the surrounding ground and structures.A three-dimensional finite element model is established for a one-track railway tunnel and an adjacent twelve-storey building frame by using commercial software Midas GTS-NX(2019)and Midas Gen.This study considered the moving load effect of a complete train,which varies with space as well as with time.The effect of factors such as train speed,overburden pressure on the tunnel and variation in soil properties are studied in the time domain.As a result,the variations in horizontal and vertical acceleration for two different sites,i.e.,the free ground surface(without structure)and the area containing the structure,are compared.Also,the displacement pattern of the raft foundation is plotted for different train velocities.At lower speeds,the heaving phenomenon is negligible,but as the speed increases,both the heaving and differential settlement increase in the foundation.This study demonstrates that the effect of moving train vibrations should be considered in the design of new nearby structures and proper ground improvement should be considered for existing structures. 展开更多
关键词 moving train load tunnelS vibration effect finite element method(FEM) wave propagation
下载PDF
A non-quasi-static model for nanowire gate-all-around tunneling field-effect transistors
16
作者 芦宾 马鑫 +3 位作者 王大为 柴国强 董林鹏 苗渊浩 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期660-665,共6页
Nanowires with gate-all-around(GAA) structures are widely considered as the most promising candidate for 3-nm technology with the best ability of suppressing the short channel effects,and tunneling field effect transi... Nanowires with gate-all-around(GAA) structures are widely considered as the most promising candidate for 3-nm technology with the best ability of suppressing the short channel effects,and tunneling field effect transistors(TFETs)based on GAA structures also present improved performance.In this paper,a non-quasi-static(NQS) device model is developed for nanowire GAA TFETs.The model can predict the transient current and capacitance varying with operation frequency,which is beyond the ability of the quasi-static(QS) model published before.Excellent agreements between the model results and numerical simulations are obtained.Moreover,the NQS model is derived from the published QS model including the current-voltage(I-V) and capacitance-voltage(C-V) characteristics.Therefore,the NQS model is compatible with the QS model for giving comprehensive understanding of GAA TFETs and would be helpful for further study of TFET circuits based on nanowire GAA structure. 展开更多
关键词 tunneling field effect transistor relaxation time approximation non-quasi-static non-quasi-static
下载PDF
An In-Situ Formed Tunneling Layer Enriches the Options of Anode for Efficient and Stable Regular Perovskite Solar Cells
17
作者 Xuesong Lin Yanbo Wang +8 位作者 Hongzhen Su Zhenzhen Qin Ziyang Zhang Mengjiong Chen Min Yang Yan Zhao Xiao Liu Xiangqian Shen Liyuan Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第1期197-208,共12页
Perovskite solar cells(PSCs)are taking steps to commercialization.However,the halogen-reactive anode with high cost becomes a stumbling block.Here,the halogen migration in PSCs is utilized to in situ generate a unifor... Perovskite solar cells(PSCs)are taking steps to commercialization.However,the halogen-reactive anode with high cost becomes a stumbling block.Here,the halogen migration in PSCs is utilized to in situ generate a uniform tunneling layer between the hole transport materials and anodes,which enriches the options of anodes by breaking the Schottky barrier,enabling the regular PSCs with both high efficiency and stability.Specifically,the regular PSC that uses silver iodide as the tunneling layer and copper as the anode obtains a champion power conversion efficiency of 23.24%(certified 22.74%)with an aperture area of 1.04 cm^(2).The devices are stable,maintaining 98.6%of the initial effi-ciency after 500 h of operation at the maximum power point with continuous 1 sun illumination.PSCs with different tunneling layers and anodes are fabricated,which confirm the generality of the strategy. 展开更多
关键词 Perovskite solar cell ANODE Halogen migration In situ tunneling layer
下载PDF
Quantum tunneling in the surface diffusion of single hydrogen atoms on Cu(001)
18
作者 于小凡 童洋武 杨勇 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第8期361-367,共7页
The adsorption and diffusion of hydrogen atoms on Cu(001)are studied using first-principles calculations.By taking into account the contribution of zero-point energy(ZPE),the originally identical barriers are shown to... The adsorption and diffusion of hydrogen atoms on Cu(001)are studied using first-principles calculations.By taking into account the contribution of zero-point energy(ZPE),the originally identical barriers are shown to be different for H and D,which are respectively calculated to be~158 me V and~139 me V in height.Using the transfer matrix method(TMM),we are able to calculate the accurate probability of transmission across the barriers.The crucial role of quantum tunneling is clearly demonstrated at low-temperature region.By introducing a temperature-dependent attempting frequency prefactor,the rate constants and diffusion coefficients are calculated.The results are in agreement with the experimental measurements at temperatures from~50 K to 80 K. 展开更多
关键词 H/Cu(001) first-principles calculations quantum tunneling diffusion coefficients
下载PDF
Total removal of a large esophageal schwannoma by submucosal tunneling endoscopic resection:A case report and review of literature
19
作者 Yu-Zhu Mu Qi Zhang +3 位作者 Jing Zhao Yan Liu Ling-Wei Kong Zhong-Xiang Ding 《World Journal of Clinical Cases》 SCIE 2023年第11期2510-2520,共11页
BACKGROUND Primary schwannoma is a rare submucosal tumor of the esophagus,which is most often benign,and surgery is the only effective treatment.So far,only a few cases have been reported.Herein,we reported a single c... BACKGROUND Primary schwannoma is a rare submucosal tumor of the esophagus,which is most often benign,and surgery is the only effective treatment.So far,only a few cases have been reported.Herein,we reported a single case diagnosed with primary esophageal schwannoma that was totally removed by submucosal tunneling endoscopic resection(STER).CASE SUMMARY A 62-year-old man presented to the hospital with a history of resection of a malignant gastric tumor and mild dysphagia.Endoscopic examination revealed a large submucosal elevated lesion in the esophagus 25-30 cm from the incisors.Endoscopic ultrasonography detected a 45 mm×35 mm×31 mm hypoechoic lesion;chest computed tomography showed a mass of approximately 55 mm×35 mm×29 mm.A preliminary examination showed features suggestive of a stromal tumor.Pathological findings indicated esophageal schwannoma.Next,STER alone was performed to completely resect the mass,and the patient recovered well post-surgery.Afterward,the patient was discharged and showed no tumor recurrence at 33 mo of follow-up.CONCLUSION Endoscopic resection is still an effective treatment for large esophageal schwannomas(>30 mm)under meticulous morphological evaluation. 展开更多
关键词 Esophageal schwannoma Submucosal tunneling endoscopic resection S100 SUBMUCOSAL Case report
下载PDF
Activated dissociation of H_(2) on the Cu(001)surface:The role of quantum tunneling
20
作者 于小凡 童洋武 杨勇 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期151-162,共12页
The activation and dissociation of hydrogen molecules(H_(2))on the Cu(001)surface are studied theoretically.Using first-principles calculations,the activation barrier for the dissociation of H_(2) on Cu(001)is determi... The activation and dissociation of hydrogen molecules(H_(2))on the Cu(001)surface are studied theoretically.Using first-principles calculations,the activation barrier for the dissociation of H_(2) on Cu(001)is determined to be~0.59 eV in height.It is found that the electron transfer from the copper substrate to H_(2) plays a key role in the activation and breaking of the H–H bond,and the formation of the Cu–H bonds.Two stationary states are identified at around the critical height of bond breaking,corresponding to the molecular and the dissociative states,respectively.Using the transfer matrix method,we also investigate the role of quantum tunneling in the dissociation process along the minimum energy pathway(MEP),which is found to be significant at or below room temperature.At a given temperature,the tunneling contributions due to the translational and the vibrational motions of H_(2) are quantified for the dissociation process.Within a wide range of temperature,the effects of quantum tunneling on the effective barriers of dissociation and the rate constants are observed.The deduced energetic parameters associated with the thermal equilibrium and non-equilibrium(molecular beam)conditions are comparable to experimental data.In the low-temperature region,the crossover from classical to quantum regime is identified. 展开更多
关键词 H_(2) CU(001) DISSOCIATION quantum tunneling density functional theory(DFT) transfer matrix method
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部