With the rapid advancement of social economies,intelligent transportation systems are gaining increasing atten-tion.Central to these systems is the detection of abnormal vehicle behavior,which remains a critical chall...With the rapid advancement of social economies,intelligent transportation systems are gaining increasing atten-tion.Central to these systems is the detection of abnormal vehicle behavior,which remains a critical challenge due to the complexity of urban roadways and the variability of external conditions.Current research on detecting abnormal traffic behaviors is still nascent,with significant room for improvement in recognition accuracy.To address this,this research has developed a new model for recognizing abnormal traffic behaviors.This model employs the R3D network as its core architecture,incorporating a dense block to facilitate feature reuse.This approach not only enhances performance with fewer parameters and reduced computational demands but also allows for the acquisition of new features while simplifying the overall network structure.Additionally,this research integrates a self-attentive method that dynamically adjusts to the prevailing traffic conditions,optimizing the relevance of features for the task at hand.For temporal analysis,a Bi-LSTM layer is utilized to extract and learn from time-based data nuances.This research conducted a series of comparative experiments using the UCF-Crime dataset,achieving a notable accuracy of 89.30%on our test set.Our results demonstrate that our model not only operates with fewer parameters but also achieves superior recognition accuracy compared to previous models.展开更多
In this paper,we explore the use of iterative curvelet thresholding for seismic random noise attenuation.A new method for combining the curvelet transform with iterative thresholding to suppress random noise is demons...In this paper,we explore the use of iterative curvelet thresholding for seismic random noise attenuation.A new method for combining the curvelet transform with iterative thresholding to suppress random noise is demonstrated and the issue is described as a linear inverse optimal problem using the L1 norm.Random noise suppression in seismic data is transformed into an L1 norm optimization problem based on the curvelet sparsity transform. Compared to the conventional methods such as median filter algorithm,FX deconvolution, and wavelet thresholding,the results of synthetic and field data processing show that the iterative curvelet thresholding proposed in this paper can sufficiently improve signal to noise radio(SNR) and give higher signal fidelity at the same time.Furthermore,to make better use of the curvelet transform such as multiple scales and multiple directions,we control the curvelet direction of the result after iterative curvelet thresholding to further improve the SNR.展开更多
To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is ex...To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is expanded to a multilevel Otsu thresholding algorithm. Secondly a firefly algorithm with opposition-learning OFA is proposed.In the OFA opposite fireflies are generated to increase the diversity of the fireflies and improve the global search ability. Thirdly the OFA is applied to searching multilevel thresholds for image segmentation. Finally the proposed method is implemented to segment the QFN images with defects and the results are compared with three methods i.e. the exhaustive search method the multilevel Otsu thresholding method based on particle swarm optimization and the multilevel Otsu thresholding method based on the firefly algorithm. Experimental results show that the proposed method can segment QFN surface defects images more efficiently and at a greater speed than that of the other three methods.展开更多
In the multilevel thresholding segmentation of the image, the classification number is always given by the supervisor. To solve this problem, a fast multilevel thresholding algorithm considering both the threshold val...In the multilevel thresholding segmentation of the image, the classification number is always given by the supervisor. To solve this problem, a fast multilevel thresholding algorithm considering both the threshold value and the classification number is proposed based on the maximum entropy, and the self-adaptive criterion of the classification number is given. The algorithm can obtain thresholds and automatically decide the classification number. Experimental results show that the algorithm is effective.展开更多
In ghost imaging, an illumination light is split into test and reference beams which pass through two different optical systems respectively and an image is constructed with the second-order correlation between the tw...In ghost imaging, an illumination light is split into test and reference beams which pass through two different optical systems respectively and an image is constructed with the second-order correlation between the two light beams. Since both light beams are diffracted when passing through the optical systems, the spatial resolution of ghost imaging is in general lower than that of a corresponding conventional imaging system. When Gaussian-shaped light spots are used to illuminate an object, randomly scanning across the object plane, in the ghost imaging scheme, we show th√at by localizing central positions of the spots of the reference light beam, the resolution can be increased by a factor of 2^(1/2) same as that of the corresponding conventional imaging system. We also find that the resolution can be further enhanced by setting an appropriate threshold to the bucket measurement of ghost imaging.展开更多
In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding....In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding. These new energy based objective criterions are further combined with the proficient search capability of swarm based algorithms to improve the efficiency and robustness. The proposed multilevel thresholding approach accurately determines the optimal threshold values by using generated energy curve, and acutely distinguishes different objects within the multi-channel complex images. The performance evaluation indices and experiments on different test images illustrate that Kapur's entropy aided with differential evolution and bacterial foraging optimization algorithm generates the most accurate and visually pleasing segmented images.展开更多
Recently, a two-dimensional (2-D) Tsallis entropy thresholding method has been proposed as a new method for image segmentation. But the computation complexity of 2-D Tsallis entropy is very large and becomes an obst...Recently, a two-dimensional (2-D) Tsallis entropy thresholding method has been proposed as a new method for image segmentation. But the computation complexity of 2-D Tsallis entropy is very large and becomes an obstacle to real time image processing systems. A fast recursive algorithm for 2-D Tsallis entropy thresholding is proposed. The key variables involved in calculating 2-D Tsallis entropy are written in recursive form. Thus, many repeating calculations are avoided and the computation complexity reduces to O(L2) from O(L4). The effectiveness of the proposed algorithm is illustrated by experimental results.展开更多
VisuShrink, ModineighShrink and NeighShrink are efficient image denoising algorithms based on the discrete wavelet transform (DWT). These methods have disadvantage of using a suboptimal universal threshold and identic...VisuShrink, ModineighShrink and NeighShrink are efficient image denoising algorithms based on the discrete wavelet transform (DWT). These methods have disadvantage of using a suboptimal universal threshold and identical neighbouring window size in all wavelet subbands. In this paper, an improved method is proposed, that determines a threshold as well as neighbouring window size for every subband using its lengths. Our experimental results illustrate that the proposed approach is better than the existing ones, i.e., NeighShrink, ModineighShrink and VisuShrink in terms of peak signal-to-noise ratio (PSNR) i.e. visual quality of the image.展开更多
Among all segmentation techniques, Otsu thresholding method is widely used. Line intercept histogram based Otsu thresholding method(LIH Otsu method) can be more resistant to Gaussian noise, highly efficient in computi...Among all segmentation techniques, Otsu thresholding method is widely used. Line intercept histogram based Otsu thresholding method(LIH Otsu method) can be more resistant to Gaussian noise, highly efficient in computing time, and can be easily extended to multilevel thresholding. But when images contain salt-and-pepper noise, LIH Otsu method performs poorly. An improved LIH Otsu method(ILIH Otsu method) is presented, which can be more resistant to Gaussian noise and salt-and-pepper noise. Moreover, it can be easily extended to multilevel thresholding. In order to improve the efficiency, the optimization algorithm based on the kinetic-molecular theory(KMTOA) is used to determine the optimal thresholds. The experimental results show that ILIH Otsu method has stronger anti-noise ability than two-dimensional Otsu thresholding method(2-D Otsu method), LIH Otsu method, K-means clustering algorithm and fuzzy clustering algorithm.展开更多
A method of segmenting vessels by morphological filters and dynamic thresholding for digital subtraction angiography (DSA) images is presented. The first step is to reduce the noise and enhance the details of image ...A method of segmenting vessels by morphological filters and dynamic thresholding for digital subtraction angiography (DSA) images is presented. The first step is to reduce the noise and enhance the details of image by using morpholngical operators. The second is to segment vessels by dynamic thresholding combined with global thresholding based on the properties of DSA images. Artificial images and actual images have been tested. Experiment results show that the proposed method is efficient and is of great potential for the segmentation of vessels in medical images.展开更多
An accelerated singular value thresholding (SVT) algorithm was introduced for matrix completion in a recent paper [1], which applies an adaptive line search scheme and improves the convergence rate from O(1/N) for SVT...An accelerated singular value thresholding (SVT) algorithm was introduced for matrix completion in a recent paper [1], which applies an adaptive line search scheme and improves the convergence rate from O(1/N) for SVT to O(1/N2), where N is the number of iterations. In this paper, we show that it is the same as the Nemirovski’s approach, and then modify it to obtain an accelerate Nemirovski’s technique and prove the convergence. Our preliminary computational results are very favorable.展开更多
A new image thresholding method is introduced, which is based on 2-D histgram and minimizing the measures of fuzziness of an input image. A new definition of fuzzy membership function is proposed, it denotes the chara...A new image thresholding method is introduced, which is based on 2-D histgram and minimizing the measures of fuzziness of an input image. A new definition of fuzzy membership function is proposed, it denotes the characteristic relationship between the gray level of each pixel and the average value of its neighborhood. When the threshold is not located at the obvious and deep valley of the histgram, genetic algorithm is devoted to the problem of selecting the appropriate threshold value. The experimental results indicate that the proposed method has good performance.展开更多
The commercial high-resolution imaging satellite with 1 m spatial resolution IKONOS is an important data source of information for urban planning and geographical information system (GIS) applications. In this paper, ...The commercial high-resolution imaging satellite with 1 m spatial resolution IKONOS is an important data source of information for urban planning and geographical information system (GIS) applications. In this paper, a morphological method is proposed. The proposed method combines the automatic thresholding and morphological operation techniques to extract the road centerline of the urban environment. This method intends to solve urban road centerline problems, vehicle, vegetation, building etc. Based on this morphological method, an object extractor is designed to extract road networks from highly remote sensing images. Some filters are applied in this experiment such as line reconstruction and region filling techniques to connect the disconnected road segments and remove the small redundant. Finally, the thinning algorithm is used to extract the road centerline. Experiments have been conducted on a high-resolution IKONOS and QuickBird images showing the efficiency of the proposed method.展开更多
Shear probe works under a tough environment where the turbulence signals to be measured are very weak. The measured turbulence signals often contain a large amount of noise. Due to wide frequency band, noise signals c...Shear probe works under a tough environment where the turbulence signals to be measured are very weak. The measured turbulence signals often contain a large amount of noise. Due to wide frequency band, noise signals cannot be effectively removed by traditional methods based on Fourier transform. In this paper, a wavelet thresholding denoising method is proposed for turbulence signal processing in that wavelet analysis can be used for multi-resolution analysis and can extract local characteristics of the signals in both time and frequency domains. Turbulence signal denoising process is modeled based on the wavelet theory and characteristics of the turbulence signal. The threshold and decomposition level, as well as the procedure of the turbulence signal denoising, are determined using the wavelet thresholding method. The proposed wavelet thresholding method was validated by turbulence signal denoising of the Western Pacific Ocean trial data. The results show that the propsed method can reduce the noise in the measured signals by shear probes, and the frequency spectrums of the denoised signal correspond well to the Nasmyth spectrum.展开更多
The VisuShrink is one of the important image denoising methods. It however does not provide good quality of image due to removing too many coefficients especially using soft-thresholding technique. This paper proposes...The VisuShrink is one of the important image denoising methods. It however does not provide good quality of image due to removing too many coefficients especially using soft-thresholding technique. This paper proposes a new image denoising scheme using wavelet transformation. In this paper, we modify the coefficients using soft-thresholding method to enhance the visual quality of noisy image. The experimental results show that our proposed scheme has better performance than the VisuShrink in terms of peak signal-to-noise ratio (PSNR) i.e., visual quality of the image.展开更多
Thresholding is a popular image segmentation method that converts gray-level image into binary image. The selection of optimum thresholds has remained a challenge over decades. In order to determine thresholds, most m...Thresholding is a popular image segmentation method that converts gray-level image into binary image. The selection of optimum thresholds has remained a challenge over decades. In order to determine thresholds, most methods analyze the histogram of the image. The optimal thresholds are often found by either minimizing or maximizing an objective function with respect to the values of the thresholds. In this paper, a new intelligence algorithm, particle swarm opti-mization (PSO), is presented for multilevel thresholding in image segmentation. This algorithm is used to maximize the Kapur’s and Otsu’s objective functions. The performance of the PSO has been tested on ten sample images and it is found to be superior as compared with genetic algorithm (GA).展开更多
Accurate segmentation is an important and challenging task in any computer vision system. It also plays a vital role in computerized analysis of skin lesion images. This paper presents a new segmentation method that c...Accurate segmentation is an important and challenging task in any computer vision system. It also plays a vital role in computerized analysis of skin lesion images. This paper presents a new segmentation method that combines the advan-tages of fuzzy C mean algorithm, thresholding and level set method. 3-class Fuzzy C mean thresholding is applied to initialize level set automatically and also for estimating controlling parameters for level set evolution. Parameters for performance evaluation are presented and segmentation results are compared with some other state-of-the-art segmentation methods. Increased true detection rate and reduced false positive and false negative errors confirm the effectiveness of proposed method for skin cancer detection.展开更多
The purpose of this study is to apply different thresholding in mammogram images, and then we will determine which technique is the best in thresholding (extraction) malignant and benign tumors from the rest breast ti...The purpose of this study is to apply different thresholding in mammogram images, and then we will determine which technique is the best in thresholding (extraction) malignant and benign tumors from the rest breast tissues. The used technique is Otsu method, because it is one of the most effective methods for most real world views with regard to uniformity and shape measures. Also, we present all the thresholding methods that used the concept of between class variance. We found from the experimental results that all the used thresholding techniques work well in detection normal breast tissues. But in abnormal tissues (breast tumors), we found that only neighborhood valley emphasis method gave best detection of malignant tumors. Also, the results demonstrate that variance and intensity contrast technique is the best in extraction the micro calcifications which represent the first signs of breast cancer.展开更多
Image denoising has remained a fundamental problem in the field of image processing. With Wavelet transforms, various algorithms for denoising in wavelet domain were introduced. Wavelets gave a superior performance in...Image denoising has remained a fundamental problem in the field of image processing. With Wavelet transforms, various algorithms for denoising in wavelet domain were introduced. Wavelets gave a superior performance in image denoising due to its properties such as multi-resolution. The problem of estimating an image that is corrupted by Additive White Gaussian Noise has been of interest for practical and theoretical reasons. Non-linear methods especially those based on wavelets have become popular due to its advantages over linear methods. Here I applied non-linear thresholding techniques in wavelet domain such as hard and soft thresholding, wavelet shrinkages such as Visu-shrink (non-adaptive) and SURE, Bayes and Normal Shrink (adaptive), using Discrete Stationary Wavelet Transform (DSWT) for different wavelets, at different levels, to denoise an image and determine the best one out of them. Performance of denoising algorithm is measured using quantitative performance measures such as Signal-to-Noise Ratio (SNR) and Mean Square Error (MSE) for various thresholding techniques.展开更多
基金supported by the National Natural Science Foundation of China(61971007&61571013).
文摘With the rapid advancement of social economies,intelligent transportation systems are gaining increasing atten-tion.Central to these systems is the detection of abnormal vehicle behavior,which remains a critical challenge due to the complexity of urban roadways and the variability of external conditions.Current research on detecting abnormal traffic behaviors is still nascent,with significant room for improvement in recognition accuracy.To address this,this research has developed a new model for recognizing abnormal traffic behaviors.This model employs the R3D network as its core architecture,incorporating a dense block to facilitate feature reuse.This approach not only enhances performance with fewer parameters and reduced computational demands but also allows for the acquisition of new features while simplifying the overall network structure.Additionally,this research integrates a self-attentive method that dynamically adjusts to the prevailing traffic conditions,optimizing the relevance of features for the task at hand.For temporal analysis,a Bi-LSTM layer is utilized to extract and learn from time-based data nuances.This research conducted a series of comparative experiments using the UCF-Crime dataset,achieving a notable accuracy of 89.30%on our test set.Our results demonstrate that our model not only operates with fewer parameters but also achieves superior recognition accuracy compared to previous models.
基金the National Science & Technology Major Projects(Grant No.2008ZX05023-005-013).
文摘In this paper,we explore the use of iterative curvelet thresholding for seismic random noise attenuation.A new method for combining the curvelet transform with iterative thresholding to suppress random noise is demonstrated and the issue is described as a linear inverse optimal problem using the L1 norm.Random noise suppression in seismic data is transformed into an L1 norm optimization problem based on the curvelet sparsity transform. Compared to the conventional methods such as median filter algorithm,FX deconvolution, and wavelet thresholding,the results of synthetic and field data processing show that the iterative curvelet thresholding proposed in this paper can sufficiently improve signal to noise radio(SNR) and give higher signal fidelity at the same time.Furthermore,to make better use of the curvelet transform such as multiple scales and multiple directions,we control the curvelet direction of the result after iterative curvelet thresholding to further improve the SNR.
基金The National Natural Science Foundation of China(No.50805023)the Science and Technology Support Program of Jiangsu Province(No.BE2008081)+1 种基金the Transformation Program of Science and Technology Achievements of Jiangsu Province(No.BA2010093)the Program for Special Talent in Six Fields of Jiangsu Province(No.2008144)
文摘To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is expanded to a multilevel Otsu thresholding algorithm. Secondly a firefly algorithm with opposition-learning OFA is proposed.In the OFA opposite fireflies are generated to increase the diversity of the fireflies and improve the global search ability. Thirdly the OFA is applied to searching multilevel thresholds for image segmentation. Finally the proposed method is implemented to segment the QFN images with defects and the results are compared with three methods i.e. the exhaustive search method the multilevel Otsu thresholding method based on particle swarm optimization and the multilevel Otsu thresholding method based on the firefly algorithm. Experimental results show that the proposed method can segment QFN surface defects images more efficiently and at a greater speed than that of the other three methods.
文摘In the multilevel thresholding segmentation of the image, the classification number is always given by the supervisor. To solve this problem, a fast multilevel thresholding algorithm considering both the threshold value and the classification number is proposed based on the maximum entropy, and the self-adaptive criterion of the classification number is given. The algorithm can obtain thresholds and automatically decide the classification number. Experimental results show that the algorithm is effective.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11534008,11605126,and 11804271)the Fund from the Ministry of Science and Technology of China(Grant No.2016YFA0301404)+2 种基金the Natural Science Basic Research Plan in Shaanxi Province,China(Grant No.2017JQ1025)the Doctoral Fund of the Ministry of Education of China(Grant Nos.2016M592772 and 2018M631137)the Fundamental Research Funds for the Central Universities
文摘In ghost imaging, an illumination light is split into test and reference beams which pass through two different optical systems respectively and an image is constructed with the second-order correlation between the two light beams. Since both light beams are diffracted when passing through the optical systems, the spatial resolution of ghost imaging is in general lower than that of a corresponding conventional imaging system. When Gaussian-shaped light spots are used to illuminate an object, randomly scanning across the object plane, in the ghost imaging scheme, we show th√at by localizing central positions of the spots of the reference light beam, the resolution can be increased by a factor of 2^(1/2) same as that of the corresponding conventional imaging system. We also find that the resolution can be further enhanced by setting an appropriate threshold to the bucket measurement of ghost imaging.
文摘In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding. These new energy based objective criterions are further combined with the proficient search capability of swarm based algorithms to improve the efficiency and robustness. The proposed multilevel thresholding approach accurately determines the optimal threshold values by using generated energy curve, and acutely distinguishes different objects within the multi-channel complex images. The performance evaluation indices and experiments on different test images illustrate that Kapur's entropy aided with differential evolution and bacterial foraging optimization algorithm generates the most accurate and visually pleasing segmented images.
基金supported by the National Natural Science Foundation of China for Distinguished Young Scholars(60525303)Doctoral Foundation of Yanshan University(B243).
文摘Recently, a two-dimensional (2-D) Tsallis entropy thresholding method has been proposed as a new method for image segmentation. But the computation complexity of 2-D Tsallis entropy is very large and becomes an obstacle to real time image processing systems. A fast recursive algorithm for 2-D Tsallis entropy thresholding is proposed. The key variables involved in calculating 2-D Tsallis entropy are written in recursive form. Thus, many repeating calculations are avoided and the computation complexity reduces to O(L2) from O(L4). The effectiveness of the proposed algorithm is illustrated by experimental results.
文摘VisuShrink, ModineighShrink and NeighShrink are efficient image denoising algorithms based on the discrete wavelet transform (DWT). These methods have disadvantage of using a suboptimal universal threshold and identical neighbouring window size in all wavelet subbands. In this paper, an improved method is proposed, that determines a threshold as well as neighbouring window size for every subband using its lengths. Our experimental results illustrate that the proposed approach is better than the existing ones, i.e., NeighShrink, ModineighShrink and VisuShrink in terms of peak signal-to-noise ratio (PSNR) i.e. visual quality of the image.
基金Project(61440026)supported by the National Natural Science Foundation of ChinaProject(11KZ|KZ08062)supported by Doctoral Research Project of Xiangtan University,China
文摘Among all segmentation techniques, Otsu thresholding method is widely used. Line intercept histogram based Otsu thresholding method(LIH Otsu method) can be more resistant to Gaussian noise, highly efficient in computing time, and can be easily extended to multilevel thresholding. But when images contain salt-and-pepper noise, LIH Otsu method performs poorly. An improved LIH Otsu method(ILIH Otsu method) is presented, which can be more resistant to Gaussian noise and salt-and-pepper noise. Moreover, it can be easily extended to multilevel thresholding. In order to improve the efficiency, the optimization algorithm based on the kinetic-molecular theory(KMTOA) is used to determine the optimal thresholds. The experimental results show that ILIH Otsu method has stronger anti-noise ability than two-dimensional Otsu thresholding method(2-D Otsu method), LIH Otsu method, K-means clustering algorithm and fuzzy clustering algorithm.
文摘A method of segmenting vessels by morphological filters and dynamic thresholding for digital subtraction angiography (DSA) images is presented. The first step is to reduce the noise and enhance the details of image by using morpholngical operators. The second is to segment vessels by dynamic thresholding combined with global thresholding based on the properties of DSA images. Artificial images and actual images have been tested. Experiment results show that the proposed method is efficient and is of great potential for the segmentation of vessels in medical images.
文摘An accelerated singular value thresholding (SVT) algorithm was introduced for matrix completion in a recent paper [1], which applies an adaptive line search scheme and improves the convergence rate from O(1/N) for SVT to O(1/N2), where N is the number of iterations. In this paper, we show that it is the same as the Nemirovski’s approach, and then modify it to obtain an accelerate Nemirovski’s technique and prove the convergence. Our preliminary computational results are very favorable.
基金This project was supported by Science and Technology Research Emphasis Fund of Ministry of Education(204010) .
文摘A new image thresholding method is introduced, which is based on 2-D histgram and minimizing the measures of fuzziness of an input image. A new definition of fuzzy membership function is proposed, it denotes the characteristic relationship between the gray level of each pixel and the average value of its neighborhood. When the threshold is not located at the obvious and deep valley of the histgram, genetic algorithm is devoted to the problem of selecting the appropriate threshold value. The experimental results indicate that the proposed method has good performance.
文摘The commercial high-resolution imaging satellite with 1 m spatial resolution IKONOS is an important data source of information for urban planning and geographical information system (GIS) applications. In this paper, a morphological method is proposed. The proposed method combines the automatic thresholding and morphological operation techniques to extract the road centerline of the urban environment. This method intends to solve urban road centerline problems, vehicle, vegetation, building etc. Based on this morphological method, an object extractor is designed to extract road networks from highly remote sensing images. Some filters are applied in this experiment such as line reconstruction and region filling techniques to connect the disconnected road segments and remove the small redundant. Finally, the thinning algorithm is used to extract the road centerline. Experiments have been conducted on a high-resolution IKONOS and QuickBird images showing the efficiency of the proposed method.
基金Supported by National Natural Science Foundation of China (No. 50835006 and No. 51005161)National High-Tech R&D Program ("863"Program) of China (No. 2010AA09Z102)
文摘Shear probe works under a tough environment where the turbulence signals to be measured are very weak. The measured turbulence signals often contain a large amount of noise. Due to wide frequency band, noise signals cannot be effectively removed by traditional methods based on Fourier transform. In this paper, a wavelet thresholding denoising method is proposed for turbulence signal processing in that wavelet analysis can be used for multi-resolution analysis and can extract local characteristics of the signals in both time and frequency domains. Turbulence signal denoising process is modeled based on the wavelet theory and characteristics of the turbulence signal. The threshold and decomposition level, as well as the procedure of the turbulence signal denoising, are determined using the wavelet thresholding method. The proposed wavelet thresholding method was validated by turbulence signal denoising of the Western Pacific Ocean trial data. The results show that the propsed method can reduce the noise in the measured signals by shear probes, and the frequency spectrums of the denoised signal correspond well to the Nasmyth spectrum.
文摘The VisuShrink is one of the important image denoising methods. It however does not provide good quality of image due to removing too many coefficients especially using soft-thresholding technique. This paper proposes a new image denoising scheme using wavelet transformation. In this paper, we modify the coefficients using soft-thresholding method to enhance the visual quality of noisy image. The experimental results show that our proposed scheme has better performance than the VisuShrink in terms of peak signal-to-noise ratio (PSNR) i.e., visual quality of the image.
文摘Thresholding is a popular image segmentation method that converts gray-level image into binary image. The selection of optimum thresholds has remained a challenge over decades. In order to determine thresholds, most methods analyze the histogram of the image. The optimal thresholds are often found by either minimizing or maximizing an objective function with respect to the values of the thresholds. In this paper, a new intelligence algorithm, particle swarm opti-mization (PSO), is presented for multilevel thresholding in image segmentation. This algorithm is used to maximize the Kapur’s and Otsu’s objective functions. The performance of the PSO has been tested on ten sample images and it is found to be superior as compared with genetic algorithm (GA).
文摘Accurate segmentation is an important and challenging task in any computer vision system. It also plays a vital role in computerized analysis of skin lesion images. This paper presents a new segmentation method that combines the advan-tages of fuzzy C mean algorithm, thresholding and level set method. 3-class Fuzzy C mean thresholding is applied to initialize level set automatically and also for estimating controlling parameters for level set evolution. Parameters for performance evaluation are presented and segmentation results are compared with some other state-of-the-art segmentation methods. Increased true detection rate and reduced false positive and false negative errors confirm the effectiveness of proposed method for skin cancer detection.
文摘The purpose of this study is to apply different thresholding in mammogram images, and then we will determine which technique is the best in thresholding (extraction) malignant and benign tumors from the rest breast tissues. The used technique is Otsu method, because it is one of the most effective methods for most real world views with regard to uniformity and shape measures. Also, we present all the thresholding methods that used the concept of between class variance. We found from the experimental results that all the used thresholding techniques work well in detection normal breast tissues. But in abnormal tissues (breast tumors), we found that only neighborhood valley emphasis method gave best detection of malignant tumors. Also, the results demonstrate that variance and intensity contrast technique is the best in extraction the micro calcifications which represent the first signs of breast cancer.
文摘Image denoising has remained a fundamental problem in the field of image processing. With Wavelet transforms, various algorithms for denoising in wavelet domain were introduced. Wavelets gave a superior performance in image denoising due to its properties such as multi-resolution. The problem of estimating an image that is corrupted by Additive White Gaussian Noise has been of interest for practical and theoretical reasons. Non-linear methods especially those based on wavelets have become popular due to its advantages over linear methods. Here I applied non-linear thresholding techniques in wavelet domain such as hard and soft thresholding, wavelet shrinkages such as Visu-shrink (non-adaptive) and SURE, Bayes and Normal Shrink (adaptive), using Discrete Stationary Wavelet Transform (DSWT) for different wavelets, at different levels, to denoise an image and determine the best one out of them. Performance of denoising algorithm is measured using quantitative performance measures such as Signal-to-Noise Ratio (SNR) and Mean Square Error (MSE) for various thresholding techniques.