期刊文献+
共找到11,816篇文章
< 1 2 250 >
每页显示 20 50 100
Preparation of semi-solid 7075 aluminum alloy slurry by serpentine pouring channel 被引量:15
1
作者 朱文志 毛卫民 涂琴 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期954-960,共7页
The semi-solid slurry of 7075 aluminum alloy was prepared by a serpentine pouring channel (SCP). Influences of pouring temperature and the number of turns on the microstructure of semi-solid 7075 alloy slurry were i... The semi-solid slurry of 7075 aluminum alloy was prepared by a serpentine pouring channel (SCP). Influences of pouring temperature and the number of turns on the microstructure of semi-solid 7075 alloy slurry were investigated. The results demonstrated that the semi-solid 7075 aluminum alloy slurry with satisfied quality could be generated by a serpentine pouring channel when the pouring temperature was in the range of 680-700 ℃. At a given pouring temperature, the equivalent size of the primaryα(Al) grains decreased and the shape factor increased with the increase of the number of turns. During the slurry preparation of semi-solid 7075 aluminum alloy, the flow direction of alloy melt changed many times when it flowed in a curved and closed serpentine channel. With the effect of“stirring”in it , the primary nuclei gradually evolved into spherical and near-spherical grains. 展开更多
关键词 7075 aluminum alloy semi-solid slurry serpentine channel primary α(al
下载PDF
Microstructure evolution of semi-solid 7075 Al alloy slurry during temperature homogenization treatment 被引量:7
2
作者 杨斌 毛卫民 宋晓俊 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3592-3597,共6页
Semi-solid 7075 Al slurry was prepared by inverted cone-shaped pouring channel process (ICSPC) and temperature homogenization (TH) treatment was combined to make the slurry uniform and have a controllable solid fr... Semi-solid 7075 Al slurry was prepared by inverted cone-shaped pouring channel process (ICSPC) and temperature homogenization (TH) treatment was combined to make the slurry uniform and have a controllable solid fraction suitable for the follow-up rheocasting. The influence of cooling rate on the microstructure evolution of primary α(Al) during TH treatment was investigated. The results show that as the cooling rate of the slurry after being prepared reduces, the growth of primaryα(Al) in the slurry tends to be nearly spherical and the uniformity of the organization is also enhanced. This may be due to the fact that lower cooling rate plays an important role in achieving the uniformity of temperature and composition in the remaining liquid, which is crucial to the formation of the spherical and homogeneous microstructure. However, a too low cooling rate will lead to a significant increase in grain growth time, which makes too coarse grains and more particles coalesce, so a certain abnormal growth of grain appears and the shape factor decreases slightly. 展开更多
关键词 semi-solid slurry 7075 al alloy MICROSTRUCTURE primaryα(al
下载PDF
Microstructure evolution and grain growth behavior of Ti14 alloy during semi-solid isothermal process 被引量:6
3
作者 陈永楠 魏建锋 +1 位作者 赵永庆 郑晶 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第5期1018-1022,共5页
Microstructure evolution of Ti14 (α+Ti2Cu) alloy during semi-solid isothermal process at different temperatures was investigated. The results reveal that both the temperature and holding time have effect on the gr... Microstructure evolution of Ti14 (α+Ti2Cu) alloy during semi-solid isothermal process at different temperatures was investigated. The results reveal that both the temperature and holding time have effect on the grain growth behavior. The grains grow obviously and the degree of globularity increases with the increase of holding time. According to the statistic analysis of experimental data, the grain growth indices are 0.88 and 0.97 at 1 000 ℃ and 1 050 ℃, respectively, which indicates that increasing isothermal temperature would accelerate microstructural evolution. 展开更多
关键词 titanium alloy Ti14 alloy semi-solid microstructure grain growth index
下载PDF
Preparation of semi-solid A380 aluminum alloy slurry by serpentine channel 被引量:8
4
作者 刘志勇 毛卫民 +1 位作者 王伟番 郑志凯 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1419-1426,共8页
The semi-solid slurry of A380 aluminum alloy was prepared by the serpentine channel. The effects of pouring temperature, curve number and curve diameter of the serpentine channel on the microstructure of the semi-soli... The semi-solid slurry of A380 aluminum alloy was prepared by the serpentine channel. The effects of pouring temperature, curve number and curve diameter of the serpentine channel on the microstructure of the semi-solid A380 aluminum alloy slurry were investigated. The results show that the satisfactory semi-solid A380 aluminum alloy slurry could be obtained when the pouring temperature ranged from 630 to 650 °C. Under the same conditions, increasing the curve number or reducing the curve diameter of the serpentine channel would decrease the average diameter and increase the shape factor of the primary α(Al) grains. The "self-stirring" of the alloy melt in the serpentine channel was beneficial to the ripening of the dendrites and the spheroidizing of the primary α(Al) grains. 展开更多
关键词 A380 aluminum alloy semi-solid slurry serpentine channel primary α(al
下载PDF
Influence of serpentine channel pouring process parameters on semi-solid A356 aluminum alloy slurry 被引量:7
5
作者 陈正周 毛卫民 吴宗闯 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第5期985-990,共6页
Semi-solid A356 aluminum alloy slurry was prepared by using serpentine channel pouring process, and the influences of the channel diameters and pouring temperatures on the semi-solid A356 aluminum alloy slurry were in... Semi-solid A356 aluminum alloy slurry was prepared by using serpentine channel pouring process, and the influences of the channel diameters and pouring temperatures on the semi-solid A356 aluminum alloy slurry were investigated. The experimental results show that when the channel diameter is 20 and 25 mm, respectively, and the pouring temperature is 640-680 ℃, the average diameter of primary α(Al) grains in the prepared A356 aluminum alloy slurry is 50-75 and 55-78 μm, respectively, and the average shape factor of primary α(Al) grains is 0.89-0.76 and 0.86-0.72, respectively. With the decline in the pouring temperature, the microstructure of semi-solid A356 aluminum alloy slurry is more desirable and a serpentine channel with smaller diameter is also advantageous to the microstructure imProvement. During the preparation of semi-solid A356 aluminum alloy slurry, a large number of nuclei can be produced by the chilling effect of the serpentine channel, and owing to the combined effect of the chilled nuclei separation and melt self-stirring, primary α(Al) nuclei can be multiplied and spheroidized finally. 展开更多
关键词 semi-solid A356 aluminum alloy serpentine channel primary α(al
下载PDF
Inhomogeneity of density and mechanical properties of A357 aluminum alloy backward extruded in semi-solid state 被引量:6
6
作者 杜之明 陈刚 +1 位作者 程远胜 谢水生 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第10期2285-2293,共9页
The inhomogeneity of density and mechanical properties of A357 aluminum alloy in the semi-solid state were investigated.Numerical simulation and backward extrusion were adopted to study the preparation of cup shells.T... The inhomogeneity of density and mechanical properties of A357 aluminum alloy in the semi-solid state were investigated.Numerical simulation and backward extrusion were adopted to study the preparation of cup shells.The results show that the relative density of the wall is the lowest in samples,and that of the base is the highest.With increasing the billet height,more time is needed for relative density of the corner to reach the maximum value,and the relative densities in every region improve evidently with increasing the pressure.The tensile stress was simulated to be the largest at the corner,and the hot tearings were forecasted to mainly appear at the corner too.By employing proper billet height and pressure,the extruded samples consisted of fine and uniform microstructures,and can obtain excellent mechanical properties and Brinell hardness. 展开更多
关键词 A357 aluminum alloy INHOMOGENEITY semi-solid state backward extrusion numerical simulation
下载PDF
Microstructure and properties of electronic packaging box with high silicon aluminum-base alloy by semi-solid thixoforming 被引量:10
7
作者 贾琪瑾 刘俊友 +1 位作者 李艳霞 王文韶 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期80-85,共6页
The electronic packaging box with high silicon aluminum-base alloy was prepared by semi-solid thixoforming technique.The flow characteristic of the Si phase was analyzed.The microstructures of different parts of the b... The electronic packaging box with high silicon aluminum-base alloy was prepared by semi-solid thixoforming technique.The flow characteristic of the Si phase was analyzed.The microstructures of different parts of the box were observed by optical microscopy and scanning electron microscopy,and the thermophysical and mechanical properties of the box were tested.The results show that there exists the segregation phenomenon between the primary Si phase and the liquid phase during thixoforming,the liquid phase flows from the box,and the primary Si phase accumulates at the bottom of the box.The volume fraction of primary Si phase decreases gradually from the bottom to the walls.Accordingly,the thermal conductivities of bottom center and walls are 107.6 and 131.5 W/(m·K),the coefficients of thermal expansion(CTE) are 7.9×10-6 and 10.6×10-6 K-1,respectively.The flexural strength increases slightly from 167 to 180 MPa.The microstructures and properties of the box show gradient distribution overall. 展开更多
关键词 high silicon aluminum-base alloy electronic packaging semi-solid thixoforming thermal conductivity coefficient of thermal expansion
下载PDF
Application of cyclic upsetting-extrusion to semi-solid processing of AZ91D magnesium alloy 被引量:3
8
作者 陶健全 姜巨福 +5 位作者 陈红 肖远伦 张荣朝 胡庆华 赵军 赵强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期909-915,共7页
The microstructural evolution of AZ91D magnesium alloy prepared by means of the cyclic upsetting-extrusion and partial remelting was investigated. The effects of remelting temperature and holding time on microstructur... The microstructural evolution of AZ91D magnesium alloy prepared by means of the cyclic upsetting-extrusion and partial remelting was investigated. The effects of remelting temperature and holding time on microstructure of semi-solid AZ91D magnesium alloy were studied. Furthermore, tensile properties of thixoextruded AZ91D magnesium alloy components were determined. The results show that the cyclic upsetting-extrusion followed by partial remelting is effective in producing semi-solid AZ91D magnesium alloy for thixofonning. During the partial remelting, with the increase of remelting temperature and holding time, the solid grain size increases and the degree of spheroidization tends to be improved. The tensile mechanical properties of thixoextruded AZ91D magnesium alloy components produced by cyclic upsetting-extrusion and partial remelting are better than those of the same alloy produced by casting. 展开更多
关键词 AZ91D magnesium alloy semi-solid processing cyclic upsetting-extrusion mechanical properties MICROSTRUCTURE
下载PDF
Effects of processing parameters on microstructure of semi-solid slurry of AZ91D magnesium alloy prepared by gas bubbling 被引量:3
9
作者 张扬 吴国华 +3 位作者 刘文才 张亮 庞松 丁文江 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2181-2187,共7页
The semi-solid slurry of AZ91 D magnesium alloy was prepared by gas bubbling process.The effect of processing parameters,including gas flow rate,cooling rate and stirring end temperature,on microstructure of AZ91 D se... The semi-solid slurry of AZ91 D magnesium alloy was prepared by gas bubbling process.The effect of processing parameters,including gas flow rate,cooling rate and stirring end temperature,on microstructure of AZ91 D semi-solid slurry was investigated.With increasing the gas flow rate from 0 to 5 L/min,the average size of primary α-Mg particles decreases from 119.1 to77.2μm and the average shape factor increases continuously from 0.1 to 0.596.The formation of non-dendritic primary α-Mg particles during gas bubbling is the result of combined effects of dendrite fragmentation and copious nucleation.With increasing the cooling rate from 3.6 to 14.6℃/min,the average particle size of primary α-Mg phase decreases from 105.0 to 68.1μm while the average shape factor peaks at 9.1℃/min.Both high and low cooling rates can induce dendritic growth of primary α-Mg particles.Changing the stirring end temperature from 590 to 595℃ has little effect on the average size and shape factor of primary α-Mg particles in AZ91 D semi-solid slurry.The insensitivity of semi-solid microstructures to the stirring end temperature is attributed to the sufficient quantity of primary particles formed in the melt. 展开更多
关键词 AZ91D magnesium alloy semi-solid slurry gas bubbling MICROSTRUCTURE
下载PDF
Mechanical behavior of Al-Zn-Mg-Cu alloy under tension in semi-solid state 被引量:2
10
作者 陈刚 张宇民 杜之明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第3期643-648,共6页
In order to study the hot fractures in relation to the semi-solid processing, the tensile tests of an extruded 7075 aluminum alloy which is based on Al?Zn?Mg?Cu system were carried out in the high temperature solid an... In order to study the hot fractures in relation to the semi-solid processing, the tensile tests of an extruded 7075 aluminum alloy which is based on Al?Zn?Mg?Cu system were carried out in the high temperature solid and semi-solid states at different strain rates. The results show that the tensile behavior can be divided into three regimes with increasing the liquid fraction. The alloy first behaves in a ductile character, and as the temperature increases, the fracture mechanism changes from ductile to brittle which is determined by both of liquid and solid, and lastly the fracture mechanism is brittle which is totally dominated by liquid. At strain rates of 1×10?4, 1×10?3 and 1×10?2 s?1, the brittle temperature ranges are 515?526, 519?550 and 540?580 °C, respectively. Two equations which are critical for tensile behavior are proposed. 展开更多
关键词 al-Zn-Mg-Cu alloy mechanical behavior semi-solid processing FRACTURE
下载PDF
Tensile properties and microstructure of Ti14 alloy after semi-solid forging 被引量:1
11
作者 陈永楠 魏建锋 +1 位作者 赵永庆 张学敏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第12期2610-2616,共7页
Tensile properties of a new α+Ti2Cu alloy after solid forging at 950 °C and semi-solid forging at 1 000 °C and 1 050 °C were investigated over the temperature range of 20-600 °C. The results reve... Tensile properties of a new α+Ti2Cu alloy after solid forging at 950 °C and semi-solid forging at 1 000 °C and 1 050 °C were investigated over the temperature range of 20-600 °C. The results reveal that high strength and low ductility are obtained in all semi-solid forged alloys. Tensile properties decrease as the semi-solid forging temperature increases, and cleavage fractures are observed after semi-solid forging at 1 050 °C. The variations in tensile properties are attributed to the coarse microstructures obtained in the semi-solid alloys. It is found that the elevated semi-solid temperatures lead to more liquid precipitates along the prior grain boundaries, which increases the peritectic precipitation and formation of Ti2Cu precipitation zones during re-solidification. Recrystallization heat treatment leads to fine microstructure of semi-solid forged alloys, resulting in improvement of tensile properties. 展开更多
关键词 Ti14 alloy semi-solid forging MICROSTRUCTURE tensile properties heat treatment
下载PDF
Microstructure evolution of hot pressed AZ91D alloy chips reheated to semi-solid state
12
作者 许红雨 吉泽升 +1 位作者 胡茂良 王振宇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第12期2906-2912,共7页
AZ91D magnesium alloy chips, which were directly collected on the spot of machining process, were recycled to prepare billet via hot pressing for semi-solid processing. The semi-solid microstructure evolution of the b... AZ91D magnesium alloy chips, which were directly collected on the spot of machining process, were recycled to prepare billet via hot pressing for semi-solid processing. The semi-solid microstructure evolution of the billet during reheating was investigated. The results indicate that there are three stages during reheating to semi-solid state: the dissolution of Mg17Al12 and diffusion of Al into α-Mg matrix, the melting of the region with high content of solute and formation of isolated solid particles, and spheroidization and growth of solid particles. Meanwhile, a number of entrapped liquid droplets form within solid particles. In addition, the number and size of entrapped liquid droplets rely on the holding time in the semi-solid temperature range. With increasing isothermal holding time, the solid fraction remains unchanged when the solid-liquid system reaches the dynamic equilibrium at last, while the solid particles become more globular and the average size of solid particles increases owing to the decreasing of interfacial energy and the effect of interfacial tension. 展开更多
关键词 AZ91D alloy CHIPS semi-solid microstructure microstructure evolution RECYCLING entrapped liquid droplet interfacial energy interfacial tension
下载PDF
Microstructure evolution and mechanical properties of ZK60 magnesium alloy produced by SSTT and RAP route in semi-solid state
13
作者 王长朋 张营营 +3 位作者 李迪凡 梅华生 张帷 刘杰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3621-3628,共8页
The microstructure evolution and mechanical properties of a ZK60 magnesium alloy produced by the semi-solid thermal transformation (SSTT) route and the recrystallization and partial melting (RAP) route were studie... The microstructure evolution and mechanical properties of a ZK60 magnesium alloy produced by the semi-solid thermal transformation (SSTT) route and the recrystallization and partial melting (RAP) route were studied, respectively. The microstructure evolution during partial remelting was studied at different temperatures for different time. The tensile mechanical properties of thixoformed components by the two routes at room temperature were examined. The results show that coalescence is dominant in the SSTT alloy and Ostwald ripening is dominant in the RAP alloy. Compared with the SSTT route, the RAP route can produce finer semi-solid microstructure under the similar isothermal holding condition. The microstructure of the RAP alloy is much more spheroidized compared with the SSTT alloy. Thixoforming for the ZK60 magnesium alloy produced by the SSTT and RAP route results in successful filling of the die, and the thixoforming process improves the mechanical properties of ZK60 magnesium alloy. The RAP alloy shows significantly advantageous mechanical properties over that of the SSTT alloy. 展开更多
关键词 ZK60 magnesium alloy semi-solid thermal transformation (SSTT) recrystallization and partial melting (RAP) route microstructure evolution mechanical properties
下载PDF
Preparation of semi-solid ZL101 aluminum alloy slurry by serpentine channel 被引量:4
14
作者 程书建 赵宇宏 +2 位作者 侯华 靳玉春 郭晓晓 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1820-1825,共6页
Semi-solid slurry of ZL101 aluminum alloy was prepared using serpentine channel. The influences of the pouring temperature, the number of curves and the serpentine channel temperature on the microstructure of semi-sol... Semi-solid slurry of ZL101 aluminum alloy was prepared using serpentine channel. The influences of the pouring temperature, the number of curves and the serpentine channel temperature on the microstructure of semi-solid ZL101 aluminum alloy were investigated. The results show that, satisfied semi-solid slurry of ZL101 aluminum alloy was prepared with pouring at 630-680℃. The morphology of primaryα(Al) grains transforms from rosette to spheroid with the decrease of pouring temperature. At the same pouring temperature, increasing the number of curves can improve the morphology of primaryα(Al) grains and decrease the grain size. Qualified slurry can be attained with lowering the pouring temperature when the serpentine channel temperature is higher. The alloy melt has the effect of“self-stirring”in the serpentine channel, which can make the primary nuclei gradually evolve into spherical and near-spherical grains. 展开更多
关键词 ZL101 aluminum alloy semi-solid SLURRY serpentine channel
下载PDF
Effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on tensile and bending properties of high-Al-containing Mg alloys 被引量:1
15
作者 Sumi Jo Gyo Myeong Lee +2 位作者 Jong Un Lee Young Min Kim Sung Hyuk Park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期779-793,共15页
This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The ext... This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The extruded Mg–9Al–1Zn–0.3Mn(AZ91)alloy contains lamellar-structured Mg_(17)Al_(12)discontinuous precipitates along the grain boundaries,which are formed via static precipitation during natural air cooling.The extruded Mg–11Al–1Zn–0.3Mn(AZ111)alloy contains spherical Mg_(17)Al_(12)precipitates at the grain boundaries and inside the grains,which are formed via dynamic precipitation during extrusion.Due to inhomogeneous distribution of precipitates,the AZ111 alloy consists of two different precipitate regions:precipitate-rich region with numerous precipitates and finer grains and precipitate-scarce region with a few precipitates and coarser grains.The AZ111 alloy exhibits a higher tensile strength than the AZ91 alloy because its smaller grain size and more abundant precipitates result in stronger grain-boundary hardening and precipitation hardening effects,respectively.However,the tensile elongation of the AZ111 alloy is lower than that of the AZ91 alloy because the weak cohesion between the dynamic precipitates and the matrix facilitates the crack initiation and propagation.During bending,a macrocrack initiates on the outer surface of bending specimen in both alloys.The AZ111 alloy exhibits higher bending yield strength and lower failure bending strain than the AZ91 alloy.The bending specimens of the AZ91 alloy have similar bending formability,whereas those of the AZ111 alloy exhibit considerable differences in bending formability and crack propagation behavior,depending on the distribution and number density of precipitates in the specimen.In bending specimens of the AZ111 alloy,it is found that the failure bending strain(ε_(f,bending))is inversely proportional to the area fraction of precipitates in the outer zone of bending specimen(A_(ppt)),with a relationship ofε_(f,bending)=–0.1A_(ppt)+5.86. 展开更多
关键词 Mg–al alloy EXTRUSION BENDING Precipitation Microstructure
下载PDF
Preheating-assisted solid-state friction stir repair of Al-Mg-Si alloy plate at different rotational speeds 被引量:1
16
作者 Hui Wang Yidi Li +3 位作者 Ming Zhang Wei Gong Ruilin Lai Yunping Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期725-736,共12页
Additive friction stir deposition(AFSD)is a novel structural repair and manufacturing technology has become a research hotspot at home and abroad in the past five years.In this work,the microstructural evolution and m... Additive friction stir deposition(AFSD)is a novel structural repair and manufacturing technology has become a research hotspot at home and abroad in the past five years.In this work,the microstructural evolution and mechanical performance of the Al-Mg-Si alloy plate repaired by the preheating-assisted AFSD process were investigated.To evaluate the tool rotation speed and substrate preheating for repair quality,the AFSD technique was used to additively repair 5 mm depth blind holes on 6061 aluminum alloy substrates.The results showed that preheat-assisted AFSD repair significantly improved joint bonding and joint strength compared to the control non-preheat substrate condition.Moreover,increasing rotation speed was also beneficial to improve the metallurgical bonding of the interface and avoid volume defects.Under preheating conditions,the UTS and elongation were positively correlated with rotation speed.Under the process parameters of preheated substrate and tool rotation speed of 1000 r/min,defect-free specimens could be obtained accompanied by tensile fracture occurring in the substrate rather than the repaired zone.The UTS and elongation reached the maximum values of 164.2MPa and 13.4%,which are equivalent to 99.4%and 140%of the heated substrate,respectively. 展开更多
关键词 additive friction stir deposition structural repair tool rotation speed al alloy
下载PDF
Synergistic effect of gradient Zn content and multiscale particles on the mechanical properties of Al-Zn-Mg-Cu alloys with coupling distribution of coarse-fine grains 被引量:1
17
作者 Liangliang Yuan Mingxing Guo +2 位作者 Yi Wang Yun Wang Linzhong Zhuang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1392-1405,共14页
This study investigated the influence of graded Zn content on the evolution of precipitated and iron-rich phases and grain struc-ture of the alloys,designed and developed the Al–8.0Zn–1.5Mg–1.5Cu–0.2Fe(wt%)alloy w... This study investigated the influence of graded Zn content on the evolution of precipitated and iron-rich phases and grain struc-ture of the alloys,designed and developed the Al–8.0Zn–1.5Mg–1.5Cu–0.2Fe(wt%)alloy with high strength and formability.With the increase of Zn content,forming the coupling distribution of multiscale precipitates and iron-rich phases with a reasonable matching ratio and dispersion distribution characteristics is easy.This phenomenon induces the formation of cell-like structures with alternate distribu-tion of coarse and fine grains,and the average plasticity–strain ratio(characterizing the formability)of the pre-aged alloy with a high strength is up to 0.708.Results reveal the evolution and influence mechanisms of multiscale second-phase particles and the corresponding high formability mechanism of the alloys.The developed coupling control process exhibits considerable potential,revealing remarkable improvements in the room temperature formability of high-strength Al–Zn–Mg–Cu alloys. 展开更多
关键词 al–Zn–Mg–Cu alloy iron-rich phase high formability microstructure MECHANISMS
下载PDF
Research on semi-solid slurry of a hypoeutectic Al-Si alloy prepared by low superheat pouring and weak electromagnetic stirring 被引量:21
18
作者 LIU Zheng MAO Weiming ZHAO Zhengduo 《Rare Metals》 SCIE EI CAS CSCD 2006年第2期177-183,共7页
The semi-solid slurry of a hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouting temperature and stirring power on the semi-solid slurry were inve... The semi-solid slurry of a hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouting temperature and stirring power on the semi-solid slurry were investigated. The results indicated that the semi-solid slurry to satisfy rheocasting can be manufactured by low superheat pouring and weak electromagnetic stirring. The pouring temperature (or superheat) and the stirring power remarkably affected the morphology of primary α-Al and the size of primary α-Al, and there is no obvious effect of stirring time on primary α-Al. Compared with the samples made by low superheat pouring with no stirring, the nucleation rate, particle morphology and grain size of primary α-Al in A356 were markedly improved by low superheat pouring and weak electromagnetic stirring. On the condition of weak electromagnetic stirring, the pouring temperature with low superheat can be suitably raised to reach the effectiveness obtained from the lower pouring temperature without stirring. 展开更多
关键词 semi-solid low superheat pouring weak electromagnetic stirring hypoeutectic al-Si alloy A356 al alloy
下载PDF
Effect of yttrium on the microstructure of a semi-solid A356 Al alloy 被引量:23
19
作者 LIUZheng HU Yongmei 《Rare Metals》 SCIE EI CAS CSCD 2008年第5期536-540,共5页
The semi-solid slurry of an A356 Al alloy, which was grain-fined by yttrium, was manufactured by low temperature pouring, The effects of grain-refining on the morphology and the grain size of the primary α phase in t... The semi-solid slurry of an A356 Al alloy, which was grain-fined by yttrium, was manufactured by low temperature pouring, The effects of grain-refining on the morphology and the grain size of the primary α phase in the semi-solid A356 Al alloy were researched. The results indicate that the semi-solid A356 AI alloy with particle-like and rosette-like primary α-Al can be prepared by low temperature pouring from a liquid grain-refined A356 alloy. The grain size and particle morphology of primary α-Al in the A356 Al alloy are markedly improved by the addition of 0.5 wt,% Y. The fining mechanism of Y on the morphology and grain size of the primary α-Al in the semi-solid A356 Al alloy was delved. 展开更多
关键词 A356 al alloy semi-solid YTTRIUM low temperature pouring
下载PDF
Manufacture technique of semi-solid slurry of hypoeutectic Al-Si alloy by low superheat pouring and weak electromagnetic stirring 被引量:11
20
作者 LIU Zheng MAO Wei-ming ZHAO Zheng-duo 《China Foundry》 SCIE CAS 2006年第2期102-107,共6页
The semi-solid slurry of hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouring temperature and stirring power on the semi-solid slurry making proc... The semi-solid slurry of hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouring temperature and stirring power on the semi-solid slurry making process were investigated. The results indicate that the semi-solid slurry to satisfy rheocasting requirement can be made by a combination of low superheat pouring and weak electromagnetic stirring. The pouring temperature (or superheat) and the stirring power significantly affect the morphology and the size of primary α-Al, while there is no obvious effect of the stirring time on primary α-Al. Compared with the samples made by low superheat pouring without stirring, the nucleation rate, particle morphology and grain size of primary α-Al in A356 Al alloy are markedly improved by a process of applying both low superheat pouring and weak electromagnetic stirring. Under the condition of weak electromagnetic stirring applied, the pouring temperature with low superheat can be equivalently to reach the effectiveness obtained from the even lower pouring temperature without stirring. 展开更多
关键词 semi-solid low SUPERHEAT POURING weak electromagnetic STIRRING HYPOEUTECTIC al-Si alloy A356 al alloy
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部