The two production lines for the first phase of the semi-solid die-casting high-end parts project were put into production in this October, and can monthly produce more than 30 thousand die casting parts.
High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress aro...High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties.展开更多
Utilizing lightweight Al alloys in various industrial applications requires achieving precise pressure tightness and leak requirements.Vacuum pressure impregnation(VPI)with thermosetting polymers is commonly used to a...Utilizing lightweight Al alloys in various industrial applications requires achieving precise pressure tightness and leak requirements.Vacuum pressure impregnation(VPI)with thermosetting polymers is commonly used to address leakage defects in die-cast Al alloys.In this study,the efficacy of the VPI technique in sealing alloy parts was investigated using a combination of nondestructive micro X-ray computed tomography(micro XCT)and a standard leak test.The results demonstrate that the commonly used water leak test is insufficient for determining the sealing performance.Instead,micro XCT shows distinct advantages by enabling more comprehensive analysis.It reveals the presence of a low atomic number impregnates sealant within casting defects,which has low grey contrast and allows for visualizing primary leakage paths in 3D.The effective atomic number of impregnated resin is 6.75 and that of Al alloy is 13.69 by dual-energy X-ray CT.This research findings will contribute to enhancing the standard VPI process parameters and the properties of impregnating sealants to improve quality assurance for impregnation in industrial metals.展开更多
Mechanical properties of semi-solid casting are dependent on multiple processing parameters,and improper processing parameters will not only reduce mean data but also increase variations.The present study investigated...Mechanical properties of semi-solid casting are dependent on multiple processing parameters,and improper processing parameters will not only reduce mean data but also increase variations.The present study investigated the impact of parameters in slurry preparation and heat treatment on the yield strength and ductility of T6 heat-treated A356 Al-Si alloy using rapid slurry forming(RSF)semi-solid casting.The focus was primarily on the robustness of mechanical properties based on Taguchi design method.By analyzing signal-to-noise ratio and minimum value calculated from-3S,the optimum slurry preparation parameters and heat treatment parameters were determined to be no quench,enthalpy exchange material(EEM)temperature of 140℃,EEM-to-melt ratio of 6mass%,stirring time of 18 s,solution heat treated at 520℃ for 2 h,and ageing heat treated at 190℃ for 6 h.In a small batch validation,the-3S yield strength and-3S elongation reach 256.1 MPa and 5.03% respectively,showing a satisfactory robustness.The hardness and microstructure of heat-treated samples with the best and worst properties were characterized to gain insight into the underlying mechanisms affecting the mean value and variations of mechanical properties.展开更多
The as-cast amorphous Ti_(48)Zr_(27)Cu_(6)Nb_(5)Be_(14)composites,comprising in situ formedβ-Ti ductile crystalline precipitates,were prepared by water cooled copper mold suction casting.Then,the semi-solid composite...The as-cast amorphous Ti_(48)Zr_(27)Cu_(6)Nb_(5)Be_(14)composites,comprising in situ formedβ-Ti ductile crystalline precipitates,were prepared by water cooled copper mold suction casting.Then,the semi-solid composites were obtained after the as-cast composites were treated by semi-solid isothermal treatment.The microstructure evolution and kinetics of the composites were examined.Results show that the microstructures of both the as-cast and semi-solid composites comprise ofβ-Ti crystal phases and amorphous matrix phases.Before and after treatment,the crystals evolve from fine granular or fine dendritic crystals to coarse crystals.As the treatment temperature increasing or the time prolonging,the average crystal size gradually increases and the surface morphology of the crystals gradually becomes regular.By studying the microstructural evolution and dynamics during the isothermal treatment process,it is found that the final morphology ofβ-Ti crystals is influenced by the isothermal treatment temperature and time(t),and theβ-Ti evolution rate increases with an increase in treatment temperature.In addition,a linear relationship was observed between the size of cubicβ-Ti crystals(D^(3))and t;the growth kinetics factor K is 3.8μm^(3)·s^(-1).As the K value closes to 4μm^(3)·s^(-1),it is inferred the morphology evolution ofβ-Ti crystals is a coarsening behavior controlled by the diffusion of solute elements.展开更多
GW63K (Mg-6Gd-3Y-0.5Zr) magnesium alloys were prepared successfully by high-vacuum die-casting. Effects of fast shot speed and vacuum level on the grain size and mechanical properties of this alloy were studied. Mic...GW63K (Mg-6Gd-3Y-0.5Zr) magnesium alloys were prepared successfully by high-vacuum die-casting. Effects of fast shot speed and vacuum level on the grain size and mechanical properties of this alloy were studied. Microstructure of the alloys was analyzed by SEM, EDX and optical microscope (OM). The effect of heat treatment on high vacuum die-casting (HVDC) GW63K alloy was also studied. The results indicate that with the increase of fast velocity, the tensile yield strength hardly changes, but the elongation first increases, then decreases. The optimum heat treatment process is solution treatment at 748 K for 2 h and aging at 473 K for 80 h. Under this condition, GW63K magnesium alloy exhibits a maximum tensile strength and elongation of 308 MPa and 9.45%. There is significant correlation between ductility and the presence of external solidified cells (ESCs). The as-cast GW63K alloy consists ofα-Mg and Mg24(Gd,Y)5 particles. After heat treatment, Gd and Y atoms dissolve intoα-Mg matrix.展开更多
Vehicle mass reduction in the automotive industry has become an industry-wide objective.Increasing fuel efficiency and greenhouse gas emission targets for engine-powered vehicles,and ambitions for extended range elect...Vehicle mass reduction in the automotive industry has become an industry-wide objective.Increasing fuel efficiency and greenhouse gas emission targets for engine-powered vehicles,and ambitions for extended range electric vehicles have motivated these reductions in vehicle mass.Mass reduction opportunities in structural automotive applications are increasingly realized through lightweight alloy castings,such as magnesium,primarily due to the ease of component substitution.The traditional benefits of magnesium die-castings including lightweighting and associated compounded mass savings,excellent strength-to-weight ratio,part consolidation,near net-shape forming,dimensional repeatability,and integration of additional components can be realized in closure applications.One recent example is the application of a magnesium die-casting for the structural inner of the liftgate in the 2017 Chrysler Pacifica,replacing nine parts in the previous generation and resulting in a liftgate assembly weight reduction of nearly 50%.The work presented here reviews past and current developments of magnesium die-castings in closure applications and discusses the benefits and challenges of magnesium alloys for these applications,including casting design,corrosion and fastening strategies,and the manufacturing design and assembly methodologies.展开更多
The vacuum die-casting process,started 25 years ago in Japan,has been widely applied.This technology contributes very much to improvement of castings quality.The main factor causing the defects of die castings is the ...The vacuum die-casting process,started 25 years ago in Japan,has been widely applied.This technology contributes very much to improvement of castings quality.The main factor causing the defects of die castings is the trapped air in the mold cavity,while the key technology of vacuum die-casting process is to avoid the trapped air effectively by evacuating the cavity before casting.At the same time,due to the shot speed and the casting pressure reduced in half,the service life of the die is prolonged and the productivity is enhanced,as well.Vacuum die-casting process is of great signif icance in improving the die castings quality and making up the shortcomings of super-high-speed shot casting.展开更多
Al-Si-Mg alloys are the most commonly used material in high vacuum die-casting(HVDC),in which the morphology and distribution ofα-Al grains have important effect on mechanical properties.A multi-component quantitativ...Al-Si-Mg alloys are the most commonly used material in high vacuum die-casting(HVDC),in which the morphology and distribution ofα-Al grains have important effect on mechanical properties.A multi-component quantitative cellular automaton(CA)model was developed to simulate the microstructure and microsegregation of HVDC Al-Si-Mg alloys with different Si contents(7%and 10%)and cooling rates during solidification.The grain number and average grain size with electron backscatter diffraction(EBSD)analysis were used to verify the simulation.The relationship between grain size and nucleation order as well as nuclei density was investigated and discussed.It is found that the growth of grains will be restrained in the location with higher nuclei density.The influence of composition and cooling rate on the solute transport reveals that for AlSi7Mg0.3 alloy the concentration of solute Mg in liquid is higher at the beginning of eutectic solidification.The comparison between simulation and experiment results shows that externally solidified crystals(ESCs)have a significant effect for samples with high cooling rate and narrow solidification interval.展开更多
Silicon-based aluminum casting alloys are known to be one of the most widely used alloy systems mainly due to their superior casting characteristics and unique combination of mechanical and physical properties. Howeve...Silicon-based aluminum casting alloys are known to be one of the most widely used alloy systems mainly due to their superior casting characteristics and unique combination of mechanical and physical properties. However,manufacturing of thin-walled aluminum die-casting components,less than 1.0 mm in thickness,is generally known to be very difficult task to achieve aluminum casting alloys with high fluidity.Therefore,in this study,the optimal die-casting conditions for producing 297 mm×210 mm×0.7 mm thin-walled aluminum component was examined experimentally by using 2 different gating systems,tangential and split type,and vent design.Furthermore,computational solidification simulation was also conducted.The results showed that split type gating system was preferable gating design than tangential type gating system at the point of view of soundness of casting and distortion generated after solidification.It was also found that proper vent design was one of the most important factors for producing thin-wall casting components because it was important for the fulfillment of the thin-wall cavity and the minimization of the casting distortion.展开更多
This paper presents some results of direct observation of mold filling in a specially designed die-casting by X-ray diffraction, including comparison with numerical simulation. Based on such work the authors discuss h...This paper presents some results of direct observation of mold filling in a specially designed die-casting by X-ray diffraction, including comparison with numerical simulation. Based on such work the authors discuss how to prevent gas entrapment and propose new methods.展开更多
The present status and perspectives of Chinese die-casting market were commented. In 2003, the total output of die castings in the whole country was 708000 tons, in which the outputs of Al-alloy, Zn-alloy, Mg-alloy, C...The present status and perspectives of Chinese die-casting market were commented. In 2003, the total output of die castings in the whole country was 708000 tons, in which the outputs of Al-alloy, Zn-alloy, Mg-alloy, Cu-alloy die castings were 474600 tons, 222000 tons, 5800 tons, 5600 tons, respectively, each accounted for 67%, 31.35%, 0.85%, 0.8% of the total. The annual sale volume of die-casting machines was approximately 1800. And the gross output value of dies approached RMB 38 billion, in which die-casting dies accounted for about 10%. In the die-casting industry of the entire country, the foreign capital enterprises, public-run enterprises, township and village enterprises, private enterprises accounted for over 80% of the total die-casting enterprises. Super huge die-casting groups are forming.展开更多
Due to its high hardness,good red hardness and excellent wear resistance at high temperature,high speed steel(HSS)is fit for the roll manufacture.In order to overcome the segregation of centrifugal casting of HSS roll...Due to its high hardness,good red hardness and excellent wear resistance at high temperature,high speed steel(HSS)is fit for the roll manufacture.In order to overcome the segregation of centrifugal casting of HSS roll,die-cast processes were developed and its effects on the properties of the HSS roll were investigated.It was found that pressure,pressing time and speed are three important factors affecting shrinkage cavity.For pouring temperature of 1 400-1 450 ℃,pressure of 150-160 MPa,pressing time of 120-150 sand pressing speed of 14-16mm/s,a compact HSS roll was obtained,which has no segregation and small working allowance.In the high speed wire rod rolling mill,service life of the HSS roll is 5to 8times longer than that of high nickel chromium infinite chilled cast iron roll.展开更多
A code-generation and recognition technology that uses a modified ejection system in the diecasting process is presented.To achieve the highest level of quality management,the first requirement in the manufacturing pr...A code-generation and recognition technology that uses a modified ejection system in the diecasting process is presented.To achieve the highest level of quality management,the first requirement in the manufacturing process is to establish a product management system according to the specific product unit.Thus,a method to individually identify each product,such as a barcode or QR code,is required during the production process.Products manufactured in the die-casting process always have ejector pin(EP)marks.Herein,an ejection system was modified to generate a unique code using EP marks.This ejection system has two features:an EP with a modified head to show the direction of rotation,and a function to dependently rotate EPs(five or six EPs)with a constant angle.The EPs are numbered according to the rotation angle.Thus,the EP marks can be viewed as a five-or six-digit code.A program was also developed to individually identify the products by automatically detecting and reading the EPs using deep learning-based object detection and classification technology.展开更多
Nowadays,having an effective technique in preparing semi-solid slurries for rheocasting process seems to be an essential requirement.In this study,semi-solid slurry of A356 aluminum alloy was prepared by three-phase a...Nowadays,having an effective technique in preparing semi-solid slurries for rheocasting process seems to be an essential requirement.In this study,semi-solid slurry of A356 aluminum alloy was prepared by three-phase annular electromagnetic stirring(A-EMS)technique under different conditions.The effects of stirring current,pouring temperature and stirring time on microstructural evolution,mean particle size,shape factor and solid fraction were investigated.The rheocasting process was carried out by using a drop weight setup and to inject the prepared semi-solid slurry in optimal conditions into the step-die cavity.The filling behavior and mechanical properties of parts were studied.Microstructural evolution showed that the best semi-solid slurry which had fine spherical particles with the average size of~27μm and a shape factor of~0.8 was achieved at the stirring current of 70 A,melt pouring temperature of 670℃,and stirring time of 30 s.Under these conditions,the step-die cavity was completely filled at die preheating temperature of 470℃.The hardness increases by decreasing step thickness as well as die preheating temperature.Moreover,the tensile properties are improved at lower die preheating temperatures.The fracture surface,which consists of a complex topography,indicates a typical ductile fracture.展开更多
A357-SiCp/A357 layered composites were prepared using a semi-solid vacuum stirring suction casting method.The microstructures,mechanical properties,and thermal conductivities of the composites fabricated under differe...A357-SiCp/A357 layered composites were prepared using a semi-solid vacuum stirring suction casting method.The microstructures,mechanical properties,and thermal conductivities of the composites fabricated under different suction casting processes were compared.Additionally,the microstructural evolution characteristics and performance enhancement mechanism of the A357-SiCp/A357 layered composites were discussed.The results demonstrate that suction casting at 610°C with a low solid phase ratio can significantly enhance the material density and reduce the agglomeration of SiCp.The A357-SiC_(p)/A357 interface is clear and straight with good bonding.With an increase in the suction casting temperature,the bending resistance and thermal conductivity of the A357-SiC_(p)/A357 layered composites exhibit a trend of significantly increase at first and then slowly decrease owing to casting defects,interface bonding,and SiCp distribution.Compared with SiCp/A357 composites,the bending strength,deflection,and thermal conductivity of the A357-SiCp/A357 layered composites increase from 257 MPa,1.07 mm,and 155.72 W·(m·K)^(-1) to 298 MPa,2.1 mm,and 169.86 W·(m·K)^(-1),respectively.This study provides a reference for improving the rheological casting of aluminum matrix layered composites.展开更多
Semi-solid squeeze casting(SSSC) and liquid squeeze casting(LSC) processes were used to fabricate a ZL104 connecting rod, and the influences of the process parameters on the microstructures and mechanical properti...Semi-solid squeeze casting(SSSC) and liquid squeeze casting(LSC) processes were used to fabricate a ZL104 connecting rod, and the influences of the process parameters on the microstructures and mechanical properties were investigated. Results showed that the tensile strength and elongation of the SSSC-fabricated rod were improved by 22% and 17%, respectively, compared with those of the LSC-fabricated rod. For SSSC, the average particle size(APS) and the shape factor(SF) increased with the increase of re-melting temperature(Tr), whereas the tensile strength and elongation increased first and then decreased. The APS increased with increasing the mold temperature(Tm), whereas the SF increased initially and then decreased, which caused the tensile strength and elongation to increase initially and then decrease. The APS decreased and the SF increased as squeezing pressure(ps) increased, and the mechanical properties were enhanced. Moreover, the optimal Tr, ps and Tm are 848 K, 100 MPa and 523 K, respectively.展开更多
Microstructure evolution of Ti14 (α+Ti2Cu) alloy during semi-solid isothermal process at different temperatures was investigated. The results reveal that both the temperature and holding time have effect on the gr...Microstructure evolution of Ti14 (α+Ti2Cu) alloy during semi-solid isothermal process at different temperatures was investigated. The results reveal that both the temperature and holding time have effect on the grain growth behavior. The grains grow obviously and the degree of globularity increases with the increase of holding time. According to the statistic analysis of experimental data, the grain growth indices are 0.88 and 0.97 at 1 000 ℃ and 1 050 ℃, respectively, which indicates that increasing isothermal temperature would accelerate microstructural evolution.展开更多
The effects of cooling conditions on the microstructure of semi-solid AZ91 slurry produced via ultrasonic vibration process were investigated. AZ91 melts were subjected to ultrasonic vibration in different temperature...The effects of cooling conditions on the microstructure of semi-solid AZ91 slurry produced via ultrasonic vibration process were investigated. AZ91 melts were subjected to ultrasonic vibration in different temperature ranges under different cooling rates. The results show that fine and spherical α-Mg particles are obtained under ultrasonic vibration at the nucleation stage, which is mainly attributed to the cavitation and acoustic streaming induced by the ultrasonic vibration. The reduction of lower limit of ultrasonic vibration temperature between the liquidus and solidus increases the solid volume fraction and average particle size. Increasing cooling rate increases the solid volume fraction and reduces the average shape factor of particles. The appropriate temperature range for ultrasonic vibration is from 605 °C to 595 °C or 590 °C, and the suitable cooling rate is 2-3 °C/min.展开更多
The semi-solid slurry of 7075 aluminum alloy was prepared by a serpentine pouring channel (SCP). Influences of pouring temperature and the number of turns on the microstructure of semi-solid 7075 alloy slurry were i...The semi-solid slurry of 7075 aluminum alloy was prepared by a serpentine pouring channel (SCP). Influences of pouring temperature and the number of turns on the microstructure of semi-solid 7075 alloy slurry were investigated. The results demonstrated that the semi-solid 7075 aluminum alloy slurry with satisfied quality could be generated by a serpentine pouring channel when the pouring temperature was in the range of 680-700 ℃. At a given pouring temperature, the equivalent size of the primaryα(Al) grains decreased and the shape factor increased with the increase of the number of turns. During the slurry preparation of semi-solid 7075 aluminum alloy, the flow direction of alloy melt changed many times when it flowed in a curved and closed serpentine channel. With the effect of“stirring”in it , the primary nuclei gradually evolved into spherical and near-spherical grains.展开更多
文摘The two production lines for the first phase of the semi-solid die-casting high-end parts project were put into production in this October, and can monthly produce more than 30 thousand die casting parts.
基金financially supported by the National Natural Science Foundation of China(Nos.52175284 and 52474396)the National Key Research and Development Program of China(No.2022YFB3404201)。
文摘High pressure die casting(HPDC)AlSi10Mn Mg alloy castings are widely used in the automobile industry.Mg can optimize the mechanical properties of castings through heat treatment,while the release of thermal stress arouses the deformation of large integrated die-castings.Herein,the development of non-heat treatment Al alloys is becoming the hot topic.In addition,HPDC contains externally solidified crystals(ESCs),which are detrimental to the mechanical properties of castings.To achieve high strength and toughness of non-heat treatment die-casting Al-Si alloy,we used AlSi9Mn alloy as matrix with the introduction of Zr,Ti,Nb,and Ce.Their influences on ESCs and mechanical properties were systematically investigated through three-dimensional reconstruction and thermodynamic simulation.Our results reveal that the addition of Ti increased ESCs'size and porosity,while the introduction of Nb refined ESCs and decreased porosity.Meanwhile,large-sized Al_3(Zr,Ti)phases formed and degraded the mechanical properties.Subsequent introduction of Ce resulted in the poisoning effect and reduced mechanical properties.
文摘Utilizing lightweight Al alloys in various industrial applications requires achieving precise pressure tightness and leak requirements.Vacuum pressure impregnation(VPI)with thermosetting polymers is commonly used to address leakage defects in die-cast Al alloys.In this study,the efficacy of the VPI technique in sealing alloy parts was investigated using a combination of nondestructive micro X-ray computed tomography(micro XCT)and a standard leak test.The results demonstrate that the commonly used water leak test is insufficient for determining the sealing performance.Instead,micro XCT shows distinct advantages by enabling more comprehensive analysis.It reveals the presence of a low atomic number impregnates sealant within casting defects,which has low grey contrast and allows for visualizing primary leakage paths in 3D.The effective atomic number of impregnated resin is 6.75 and that of Al alloy is 13.69 by dual-energy X-ray CT.This research findings will contribute to enhancing the standard VPI process parameters and the properties of impregnating sealants to improve quality assurance for impregnation in industrial metals.
文摘Mechanical properties of semi-solid casting are dependent on multiple processing parameters,and improper processing parameters will not only reduce mean data but also increase variations.The present study investigated the impact of parameters in slurry preparation and heat treatment on the yield strength and ductility of T6 heat-treated A356 Al-Si alloy using rapid slurry forming(RSF)semi-solid casting.The focus was primarily on the robustness of mechanical properties based on Taguchi design method.By analyzing signal-to-noise ratio and minimum value calculated from-3S,the optimum slurry preparation parameters and heat treatment parameters were determined to be no quench,enthalpy exchange material(EEM)temperature of 140℃,EEM-to-melt ratio of 6mass%,stirring time of 18 s,solution heat treated at 520℃ for 2 h,and ageing heat treated at 190℃ for 6 h.In a small batch validation,the-3S yield strength and-3S elongation reach 256.1 MPa and 5.03% respectively,showing a satisfactory robustness.The hardness and microstructure of heat-treated samples with the best and worst properties were characterized to gain insight into the underlying mechanisms affecting the mean value and variations of mechanical properties.
基金supported by the Natural Science Foundation of Hunan Province(No.2023JJ50453)the Science Research Excellent Youth Project of Hunan Educational Department(No.22B0777)+1 种基金the Key Scientific Research Project of Hunan Educational Department(No.22A0551)the Key Scientific Research Projects of Huaihua University(No.HHUY2022-13).
文摘The as-cast amorphous Ti_(48)Zr_(27)Cu_(6)Nb_(5)Be_(14)composites,comprising in situ formedβ-Ti ductile crystalline precipitates,were prepared by water cooled copper mold suction casting.Then,the semi-solid composites were obtained after the as-cast composites were treated by semi-solid isothermal treatment.The microstructure evolution and kinetics of the composites were examined.Results show that the microstructures of both the as-cast and semi-solid composites comprise ofβ-Ti crystal phases and amorphous matrix phases.Before and after treatment,the crystals evolve from fine granular or fine dendritic crystals to coarse crystals.As the treatment temperature increasing or the time prolonging,the average crystal size gradually increases and the surface morphology of the crystals gradually becomes regular.By studying the microstructural evolution and dynamics during the isothermal treatment process,it is found that the final morphology ofβ-Ti crystals is influenced by the isothermal treatment temperature and time(t),and theβ-Ti evolution rate increases with an increase in treatment temperature.In addition,a linear relationship was observed between the size of cubicβ-Ti crystals(D^(3))and t;the growth kinetics factor K is 3.8μm^(3)·s^(-1).As the K value closes to 4μm^(3)·s^(-1),it is inferred the morphology evolution ofβ-Ti crystals is a coarsening behavior controlled by the diffusion of solute elements.
基金Projects(51171113,51301107)supported by the National Natural Science Foundation of ChinaProjects(2012M511089,2013T60444)supported by China Postdoctoral Science Foundation
文摘GW63K (Mg-6Gd-3Y-0.5Zr) magnesium alloys were prepared successfully by high-vacuum die-casting. Effects of fast shot speed and vacuum level on the grain size and mechanical properties of this alloy were studied. Microstructure of the alloys was analyzed by SEM, EDX and optical microscope (OM). The effect of heat treatment on high vacuum die-casting (HVDC) GW63K alloy was also studied. The results indicate that with the increase of fast velocity, the tensile yield strength hardly changes, but the elongation first increases, then decreases. The optimum heat treatment process is solution treatment at 748 K for 2 h and aging at 473 K for 80 h. Under this condition, GW63K magnesium alloy exhibits a maximum tensile strength and elongation of 308 MPa and 9.45%. There is significant correlation between ductility and the presence of external solidified cells (ESCs). The as-cast GW63K alloy consists ofα-Mg and Mg24(Gd,Y)5 particles. After heat treatment, Gd and Y atoms dissolve intoα-Mg matrix.
文摘Vehicle mass reduction in the automotive industry has become an industry-wide objective.Increasing fuel efficiency and greenhouse gas emission targets for engine-powered vehicles,and ambitions for extended range electric vehicles have motivated these reductions in vehicle mass.Mass reduction opportunities in structural automotive applications are increasingly realized through lightweight alloy castings,such as magnesium,primarily due to the ease of component substitution.The traditional benefits of magnesium die-castings including lightweighting and associated compounded mass savings,excellent strength-to-weight ratio,part consolidation,near net-shape forming,dimensional repeatability,and integration of additional components can be realized in closure applications.One recent example is the application of a magnesium die-casting for the structural inner of the liftgate in the 2017 Chrysler Pacifica,replacing nine parts in the previous generation and resulting in a liftgate assembly weight reduction of nearly 50%.The work presented here reviews past and current developments of magnesium die-castings in closure applications and discusses the benefits and challenges of magnesium alloys for these applications,including casting design,corrosion and fastening strategies,and the manufacturing design and assembly methodologies.
文摘The vacuum die-casting process,started 25 years ago in Japan,has been widely applied.This technology contributes very much to improvement of castings quality.The main factor causing the defects of die castings is the trapped air in the mold cavity,while the key technology of vacuum die-casting process is to avoid the trapped air effectively by evacuating the cavity before casting.At the same time,due to the shot speed and the casting pressure reduced in half,the service life of the die is prolonged and the productivity is enhanced,as well.Vacuum die-casting process is of great signif icance in improving the die castings quality and making up the shortcomings of super-high-speed shot casting.
基金funded by the National Natural Science Foundation of China(No.51875211)the Key Area Research and Development Program of Guangdong Province(No.2020B010186002)the Key Technology Program of Foshan(1920001001040),China.
文摘Al-Si-Mg alloys are the most commonly used material in high vacuum die-casting(HVDC),in which the morphology and distribution ofα-Al grains have important effect on mechanical properties.A multi-component quantitative cellular automaton(CA)model was developed to simulate the microstructure and microsegregation of HVDC Al-Si-Mg alloys with different Si contents(7%and 10%)and cooling rates during solidification.The grain number and average grain size with electron backscatter diffraction(EBSD)analysis were used to verify the simulation.The relationship between grain size and nucleation order as well as nuclei density was investigated and discussed.It is found that the growth of grains will be restrained in the location with higher nuclei density.The influence of composition and cooling rate on the solute transport reveals that for AlSi7Mg0.3 alloy the concentration of solute Mg in liquid is higher at the beginning of eutectic solidification.The comparison between simulation and experiment results shows that externally solidified crystals(ESCs)have a significant effect for samples with high cooling rate and narrow solidification interval.
基金Acknowledgement This work was supported by Korea Institute of Industrial Technology and Gwangju Metropolitan City through "The Advanced Materials and Components Industry Development Program".
文摘Silicon-based aluminum casting alloys are known to be one of the most widely used alloy systems mainly due to their superior casting characteristics and unique combination of mechanical and physical properties. However,manufacturing of thin-walled aluminum die-casting components,less than 1.0 mm in thickness,is generally known to be very difficult task to achieve aluminum casting alloys with high fluidity.Therefore,in this study,the optimal die-casting conditions for producing 297 mm×210 mm×0.7 mm thin-walled aluminum component was examined experimentally by using 2 different gating systems,tangential and split type,and vent design.Furthermore,computational solidification simulation was also conducted.The results showed that split type gating system was preferable gating design than tangential type gating system at the point of view of soundness of casting and distortion generated after solidification.It was also found that proper vent design was one of the most important factors for producing thin-wall casting components because it was important for the fulfillment of the thin-wall cavity and the minimization of the casting distortion.
文摘This paper presents some results of direct observation of mold filling in a specially designed die-casting by X-ray diffraction, including comparison with numerical simulation. Based on such work the authors discuss how to prevent gas entrapment and propose new methods.
文摘The present status and perspectives of Chinese die-casting market were commented. In 2003, the total output of die castings in the whole country was 708000 tons, in which the outputs of Al-alloy, Zn-alloy, Mg-alloy, Cu-alloy die castings were 474600 tons, 222000 tons, 5800 tons, 5600 tons, respectively, each accounted for 67%, 31.35%, 0.85%, 0.8% of the total. The annual sale volume of die-casting machines was approximately 1800. And the gross output value of dies approached RMB 38 billion, in which die-casting dies accounted for about 10%. In the die-casting industry of the entire country, the foreign capital enterprises, public-run enterprises, township and village enterprises, private enterprises accounted for over 80% of the total die-casting enterprises. Super huge die-casting groups are forming.
基金Item Sponsored by Provincial Natural Science Foundation of Henan of China(2003460001)University Young Backbone Teacher Fund of Henan ProvinceTackle-Key-Program of Science and Technology Committee of Henan Province(0424260002)
文摘Due to its high hardness,good red hardness and excellent wear resistance at high temperature,high speed steel(HSS)is fit for the roll manufacture.In order to overcome the segregation of centrifugal casting of HSS roll,die-cast processes were developed and its effects on the properties of the HSS roll were investigated.It was found that pressure,pressing time and speed are three important factors affecting shrinkage cavity.For pouring temperature of 1 400-1 450 ℃,pressure of 150-160 MPa,pressing time of 120-150 sand pressing speed of 14-16mm/s,a compact HSS roll was obtained,which has no segregation and small working allowance.In the high speed wire rod rolling mill,service life of the HSS roll is 5to 8times longer than that of high nickel chromium infinite chilled cast iron roll.
基金the development project of Industrial and Manufacturing Source Technology of the Korea Institute of Industrial Technology(KITECH)granted financial resource by the Ministry of Economy and Finance,Republic of Korea(No.EO190031).
文摘A code-generation and recognition technology that uses a modified ejection system in the diecasting process is presented.To achieve the highest level of quality management,the first requirement in the manufacturing process is to establish a product management system according to the specific product unit.Thus,a method to individually identify each product,such as a barcode or QR code,is required during the production process.Products manufactured in the die-casting process always have ejector pin(EP)marks.Herein,an ejection system was modified to generate a unique code using EP marks.This ejection system has two features:an EP with a modified head to show the direction of rotation,and a function to dependently rotate EPs(five or six EPs)with a constant angle.The EPs are numbered according to the rotation angle.Thus,the EP marks can be viewed as a five-or six-digit code.A program was also developed to individually identify the products by automatically detecting and reading the EPs using deep learning-based object detection and classification technology.
基金Central Applied Research Laboratory(CARL)Center of Materials ResearchDepartment of Materials Science and Metallurgy,Shahid Bahonar University of Kerman(SBUK)for support of this work。
文摘Nowadays,having an effective technique in preparing semi-solid slurries for rheocasting process seems to be an essential requirement.In this study,semi-solid slurry of A356 aluminum alloy was prepared by three-phase annular electromagnetic stirring(A-EMS)technique under different conditions.The effects of stirring current,pouring temperature and stirring time on microstructural evolution,mean particle size,shape factor and solid fraction were investigated.The rheocasting process was carried out by using a drop weight setup and to inject the prepared semi-solid slurry in optimal conditions into the step-die cavity.The filling behavior and mechanical properties of parts were studied.Microstructural evolution showed that the best semi-solid slurry which had fine spherical particles with the average size of~27μm and a shape factor of~0.8 was achieved at the stirring current of 70 A,melt pouring temperature of 670℃,and stirring time of 30 s.Under these conditions,the step-die cavity was completely filled at die preheating temperature of 470℃.The hardness increases by decreasing step thickness as well as die preheating temperature.Moreover,the tensile properties are improved at lower die preheating temperatures.The fracture surface,which consists of a complex topography,indicates a typical ductile fracture.
文摘A357-SiCp/A357 layered composites were prepared using a semi-solid vacuum stirring suction casting method.The microstructures,mechanical properties,and thermal conductivities of the composites fabricated under different suction casting processes were compared.Additionally,the microstructural evolution characteristics and performance enhancement mechanism of the A357-SiCp/A357 layered composites were discussed.The results demonstrate that suction casting at 610°C with a low solid phase ratio can significantly enhance the material density and reduce the agglomeration of SiCp.The A357-SiC_(p)/A357 interface is clear and straight with good bonding.With an increase in the suction casting temperature,the bending resistance and thermal conductivity of the A357-SiC_(p)/A357 layered composites exhibit a trend of significantly increase at first and then slowly decrease owing to casting defects,interface bonding,and SiCp distribution.Compared with SiCp/A357 composites,the bending strength,deflection,and thermal conductivity of the A357-SiCp/A357 layered composites increase from 257 MPa,1.07 mm,and 155.72 W·(m·K)^(-1) to 298 MPa,2.1 mm,and 169.86 W·(m·K)^(-1),respectively.This study provides a reference for improving the rheological casting of aluminum matrix layered composites.
基金Project(51335009)supported by the National Natural Science Foundation of ChinaProject(2014JQ7273)supported by the Natural Science Foundation of Shaanxi Province of ChinaProject(CXY1514(1))supported by the Xi’an Science and Technology Plan Projects,China
文摘Semi-solid squeeze casting(SSSC) and liquid squeeze casting(LSC) processes were used to fabricate a ZL104 connecting rod, and the influences of the process parameters on the microstructures and mechanical properties were investigated. Results showed that the tensile strength and elongation of the SSSC-fabricated rod were improved by 22% and 17%, respectively, compared with those of the LSC-fabricated rod. For SSSC, the average particle size(APS) and the shape factor(SF) increased with the increase of re-melting temperature(Tr), whereas the tensile strength and elongation increased first and then decreased. The APS increased with increasing the mold temperature(Tm), whereas the SF increased initially and then decreased, which caused the tensile strength and elongation to increase initially and then decrease. The APS decreased and the SF increased as squeezing pressure(ps) increased, and the mechanical properties were enhanced. Moreover, the optimal Tr, ps and Tm are 848 K, 100 MPa and 523 K, respectively.
基金Projects (2005CCA06400, 2007CB613807) supported by the National Basic Research Program of China Project (CHD2010JC115) supported by the Special Fund for Basic Scientific Research of Central Colleges,China
文摘Microstructure evolution of Ti14 (α+Ti2Cu) alloy during semi-solid isothermal process at different temperatures was investigated. The results reveal that both the temperature and holding time have effect on the grain growth behavior. The grains grow obviously and the degree of globularity increases with the increase of holding time. According to the statistic analysis of experimental data, the grain growth indices are 0.88 and 0.97 at 1 000 ℃ and 1 050 ℃, respectively, which indicates that increasing isothermal temperature would accelerate microstructural evolution.
基金Project(2011M500772)supported by China Postdoctoral Science Foundation of ChinaProject(2007CB613701)supported by the National Basic Research Program of ChinaProject(2009AA033501)supported by the National High-tech R&D Program of China
文摘The effects of cooling conditions on the microstructure of semi-solid AZ91 slurry produced via ultrasonic vibration process were investigated. AZ91 melts were subjected to ultrasonic vibration in different temperature ranges under different cooling rates. The results show that fine and spherical α-Mg particles are obtained under ultrasonic vibration at the nucleation stage, which is mainly attributed to the cavitation and acoustic streaming induced by the ultrasonic vibration. The reduction of lower limit of ultrasonic vibration temperature between the liquidus and solidus increases the solid volume fraction and average particle size. Increasing cooling rate increases the solid volume fraction and reduces the average shape factor of particles. The appropriate temperature range for ultrasonic vibration is from 605 °C to 595 °C or 590 °C, and the suitable cooling rate is 2-3 °C/min.
基金Project (2011CB606302-1) supported by the National Basic Research Program of China
文摘The semi-solid slurry of 7075 aluminum alloy was prepared by a serpentine pouring channel (SCP). Influences of pouring temperature and the number of turns on the microstructure of semi-solid 7075 alloy slurry were investigated. The results demonstrated that the semi-solid 7075 aluminum alloy slurry with satisfied quality could be generated by a serpentine pouring channel when the pouring temperature was in the range of 680-700 ℃. At a given pouring temperature, the equivalent size of the primaryα(Al) grains decreased and the shape factor increased with the increase of the number of turns. During the slurry preparation of semi-solid 7075 aluminum alloy, the flow direction of alloy melt changed many times when it flowed in a curved and closed serpentine channel. With the effect of“stirring”in it , the primary nuclei gradually evolved into spherical and near-spherical grains.