期刊文献+
共找到1,487篇文章
< 1 2 75 >
每页显示 20 50 100
Application of cyclic upsetting-extrusion to semi-solid processing of AZ91D magnesium alloy 被引量:3
1
作者 陶健全 姜巨福 +5 位作者 陈红 肖远伦 张荣朝 胡庆华 赵军 赵强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期909-915,共7页
The microstructural evolution of AZ91D magnesium alloy prepared by means of the cyclic upsetting-extrusion and partial remelting was investigated. The effects of remelting temperature and holding time on microstructur... The microstructural evolution of AZ91D magnesium alloy prepared by means of the cyclic upsetting-extrusion and partial remelting was investigated. The effects of remelting temperature and holding time on microstructure of semi-solid AZ91D magnesium alloy were studied. Furthermore, tensile properties of thixoextruded AZ91D magnesium alloy components were determined. The results show that the cyclic upsetting-extrusion followed by partial remelting is effective in producing semi-solid AZ91D magnesium alloy for thixofonning. During the partial remelting, with the increase of remelting temperature and holding time, the solid grain size increases and the degree of spheroidization tends to be improved. The tensile mechanical properties of thixoextruded AZ91D magnesium alloy components produced by cyclic upsetting-extrusion and partial remelting are better than those of the same alloy produced by casting. 展开更多
关键词 AZ91D magnesium alloy semi-solid processing cyclic upsetting-extrusion mechanical properties MICROSTRUCTURE
下载PDF
Microstructure evolution of processed Mg-Al-Zn alloy by equal channel angular extrusion in semi-solid isothermal treatment 被引量:9
2
作者 姜巨福 罗守靖 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2006年第6期1313-1319,共7页
Microstructure evolution of processed Mg-Al-Zn alloy by equal channel angularextrusion(ECAE) in semi-solid isothermal treatment was investigated. The results show that withincreasing semi-solid isothermal treatment te... Microstructure evolution of processed Mg-Al-Zn alloy by equal channel angularextrusion(ECAE) in semi-solid isothermal treatment was investigated. The results show that withincreasing semi-solid isothermal treatment temperature, the a phase solid grain size of processedMg-Al-Zn alloy by ECAE increases firstly due to coarsening of a phase solid grains, then decreasesdue to melting of a phase solid grains. With the increase of extrusion passes during ECAE, the aphase solid grain size in the following semi-solid isothermal treatment decreases. The a phase solidgrain size of processed Mg-Al-Zn alloy by ECAE under route B_C is the smallest, while the a phasesolid grain size of processed material by ECAE under route A is the largest. The primary mechanismof spheroid formation depends on the melting of recrystallizing boundaries and diffusion of soluteatoms in the semi-solid state. 展开更多
关键词 magnesium alloy Mg-Al-Zn alloy equal channel angular extrusion isothermaltreatment semi-solid processing
下载PDF
Simulation Analysis of Extrusion Process of Equilateral L-shaped Aluminum Profiles Based on Deform-3D
3
作者 Guangchen XU Wenwu ZHANG +1 位作者 Sisi CHEN Mantong WANG 《Mechanical Engineering Science》 2023年第1期12-15,I0005,共5页
The extrusion deformation process of L-shaped aluminum profiles was numerically simulated using the finite element program Deform-3D.The simulation findings revealed that the deformation of the profiles was mostly cau... The extrusion deformation process of L-shaped aluminum profiles was numerically simulated using the finite element program Deform-3D.The simulation findings revealed that the deformation of the profiles was mostly caused by unequal material flow velocity,which resulted in the profiles bending.Determine the impact of extrusion parameters on the bending deformation of the profile after studying various parameters that may affect the material flow mode(hole position,extrusion speed). 展开更多
关键词 DEFORM-3D extrusion processing BENDING
下载PDF
Effects of Extrusion Processing on Microstructure of 7075Al Alloy in the Semi-solid State 被引量:2
4
作者 SONG Yang ZHANG Zhiming +2 位作者 WANG Kai LI Hongxu ZHU Zizong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第6期1433-1443,共11页
A recrystallization and partial melting(RAP) process was introduced to prepare the semi-solid 7075 aluminum alloy used for thixoforming. In order to obtain an ideal semi-solid microstructure, a series of extrusion exp... A recrystallization and partial melting(RAP) process was introduced to prepare the semi-solid 7075 aluminum alloy used for thixoforming. In order to obtain an ideal semi-solid microstructure, a series of extrusion experiments were conducted to comparatively investigate the optimum extrusion process parameters. Commercial 7075 Al alloy samples were firstly extruded with varying extrusion ratios below the recrystallization temperature followed by homogenization, then these samples were reheated to the semi-solid state and held in the range of 5 to 50 minutes. The experimental results show that varying process cause the difference in the deformation degree and microstructure for as-extruded samples, resulting in various semi-solid microstructure. It is verified that the formation of equiaxed grains in semi-solid microstructure depends on recrystallization behavior of extruded samples during partial melting. Both relative high extrusion temperature and low extrusion ratio lead to high volume fraction of recrystallized area, thus entirely equiaxed solid grains in semi-solid 7075 Al alloy samples can be obtained finally. In addition, Ostwald ripening was determined as the dominate coarsening mechanism of solid grains in semi-solid state for this 7075 Al alloy during the RAP route. The influence of predeformation on recrystallization behavior of this 7075 Al alloy was discussed in detail. 展开更多
关键词 aluminum alloys extrusion process recrystallization and partial melting(RAP) semi-solid microstructure coarsening mechanism
下载PDF
Development of aluminum rheo-extrusion process using semi-solid slurry at low solid fraction 被引量:2
5
作者 T.RATTANOCHAIKUL S.JANUDOM +1 位作者 N.MEMONGKOL J.WANNASIN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第9期1763-1768,共6页
An aluminum extrusion process is mainly used to fabricate long tubes, beams and rods for various applications. However, this process has a high production cost due to the need for investment of high-pressure machinery... An aluminum extrusion process is mainly used to fabricate long tubes, beams and rods for various applications. However, this process has a high production cost due to the need for investment of high-pressure machinery. The objective of this work is to develop a new semi-solid extrusion process using semi-solid slurry at low solid fractions. A laboratory extrusion system was used to fabricate aluminum rods with the diameter of 12 ram. The semi-solid metal process used in this study was the gas induced semi-solid (GISS) technique. To study the feasibility of the GISS extrusion process, the effects of extrusion parameters such as plunger speed and solid fi-action on the extrudability, microstructure, and mechanical properties of extruded samples were investigated. The results show that the plunger speed and solid fraction of the semi-solid metal need to be carefully controlled to produce complete extruded parts. 展开更多
关键词 aluminum alloys extrusion semi-solid metal rheo-extrusion gas induced semi-solid (GISS)
下载PDF
Upper bound analysis of thixotropic extrusion processes of semi-solid magnesium alloys
6
作者 闫洪 杨滨 夏巨谌 《中国有色金属学会会刊:英文版》 CSCD 2005年第S3期227-231,共5页
The methodology was used to conduct the upper bound analysis of thixotropic extrusion process of semi-solid metal. The calculated formulas of deformed power were derived. The relationship among relative stress, fricti... The methodology was used to conduct the upper bound analysis of thixotropic extrusion process of semi-solid metal. The calculated formulas of deformed power were derived. The relationship among relative stress, frictional factor and die semi-angle were obtained. The relative stress increases with increasing frictional factor, whose value increases with increasing area reduction ratio of a certain die semi-angle. The relative stress firstly decreases and then increases with increasing die semi-angle at a certain area reduction ratio. So, the optimal die semi-angle exists with the corresponding minimum relative stress. The calculated results are in agreement with the experimental ones, which are applied to directing technological practice of axis-symmetry forward extrusion of semi-solid magnesium alloys. 展开更多
关键词 semi-solid magnesium alloys thixotropic extrusion UPPER BOUND method
下载PDF
Identification of processing window for extrusion of large thick-walled Inconel 625 alloy pipes using response surface methodology 被引量:5
7
作者 郭良刚 党利 +2 位作者 杨合 张君 郑文达 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1902-1911,共10页
Identifying suitable processing window is necessary but difficult for achieving favorable microstructure and performance in extrusion of large thick-walled pipe with difficult-to-deform Inconel 625 alloy. In this work... Identifying suitable processing window is necessary but difficult for achieving favorable microstructure and performance in extrusion of large thick-walled pipe with difficult-to-deform Inconel 625 alloy. In this work, a method was established for identifying the extrusion process window considering temperature control using response surface methodology. Firstly, the response surface models, which correlate temperature rise and peak temperature to key extrusion parameters, have been developed by orthogonal regression based on finite element calculated data. Secondly, the coupled effects of the key extrusion parameters on the temperature rise and peak temperature have been disclosed based on the regression models. Lastly, suitable extrusion processing windows, which are described by contour map of peak temperature in the space of extrusion speed and initial billet temperature, have been established for different extrusion ratios. Using the identified process window, a suitable combination of the key extrusion parameters can be determined conveniently and quickly. 展开更多
关键词 profile extrusion processing window response surface methodology difficult-to-deform materials finite element simulation
下载PDF
Dynamical Solidification Behaviors and Metal Flow during Continuous Semisolid Extrusion Process of AZ31 Alloy 被引量:10
8
作者 Renguo Cuan Liqing Chen +1 位作者 Jiangping Li Fuxing Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第3期395-400,共6页
In this paper, a novel near-net-shape forming process, continuous semisolid extrusion process (CSEP) of AZ31 alloy was proposed, and the dynamical solidification behaviors and metal flow during the process were firs... In this paper, a novel near-net-shape forming process, continuous semisolid extrusion process (CSEP) of AZ31 alloy was proposed, and the dynamical solidification behaviors and metal flow during the process were firstly investigated. During casting AZ31 alloy by this process, non-uniform microstructure distributions and non- equilibrium solidification region near the roll surface were found in the roll-shoe gap. Microstructural evolution from dendrite to rosette and spherical grains was observed during the casting by CSEP. Casting temperature, roll-shoe gap width and cooling ability have great effect on casting process and metal flow, so these factors should be carefully controlled, a proper casting temperature of 710-750℃ is suggested. The white α phases were strongly stretched during the processing, and the remnant liquids are correspondingly distributes along the solid phase boundaries and also show stripped lines. 展开更多
关键词 Dynamical solidification Continuous semisolid extrusion process Micro structural evolution AZ31 alloy
下载PDF
Hot Extrusion Processing of Al–Li Alloy Profiles and Related Issues:A Review 被引量:7
9
作者 Yongxiao Wang Guoqun Zhao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第4期6-29,共24页
Al-Li alloy is a new structural material with the advantages of lightweight and high strength.The extrusion profiles of Al-Li alloy are widely used in aerospace and other fields,which can significantly reduce the weig... Al-Li alloy is a new structural material with the advantages of lightweight and high strength.The extrusion profiles of Al-Li alloy are widely used in aerospace and other fields,which can significantly reduce the weight of the aerospace equipment and improve their carrying capacity and service performance.Particular service conditions of structural components in aeronautical and space areas put forward strict requirements on microstructure,mechanical properties,and dimensional precision of Al-Li alloy profiles.Therefore,it places higher requirements on the shape forming and microstructure controlling of the Al-Li alloy profiles.The manufacturing process of the profiles involves billet homogenization,hot extrusion,solution and quenching treatments,artificial aging,and others.The parameters of each process as well as the die structure have important effects on the final performance of the profiles.This article summarizes the main applications and key mechanical properties of Al-Li alloy extrusion profiles.The technologies related to the manufacturing process of the extrusion profiles are summarized and analyzed.The related studies about the evolutions of the microstructure and mechanical properties during homogenization and extrusion processes are reviewed.The developments of the solid solution and quenching treatments as well as the aging strengthening technology for extruded Al-Li alloy profiles are also introduced.The scientific problems and key technologies that need to be solved in the manufacturing of Al-Li alloy extrusion profiles are presented,and the prospect for future development trends in these fields is given. 展开更多
关键词 Al-Li alloy extrusion profile extrusion process Heat treatment Microstructure Mechanical property
下载PDF
Unique microstructure and property of a 2024 aluminum alloy subjected to upsetting extrusion multiple processing 被引量:2
10
作者 LIXiaoqiang LIYuanyuan +3 位作者 CHENWeiping LONGYan HULianxi WANGErde 《Rare Metals》 SCIE EI CAS CSCD 2004年第1期74-78,共5页
The microstructure and hardness of a 2024 aluminum alloy subjected tomulti-pass upsetting extrusion at ambient temperature were studied. Experimental results indicatedthat with the number of upsetting extrusion passes... The microstructure and hardness of a 2024 aluminum alloy subjected tomulti-pass upsetting extrusion at ambient temperature were studied. Experimental results indicatedthat with the number of upsetting extrusion passes increasing, the grains of the alloy are graduallyrefined and the hardness increases correspondingly. After ten passes of upsetting extrusionprocessing, the grain size decreases to less than 200 nm in diameter and the sample maintains itsoriginal shape, while the hardness is double owing to equal-axial ultrafine grains and workhardening effect caused by large plastic deformation. 展开更多
关键词 metal microstructure upsetting extrusion multiple processing PROPERTY
下载PDF
Fabrication of fine-grained,high strength and toughness Mg alloy by extrusion−shearing process 被引量:15
11
作者 Bo-ning WANG Feng WANG +2 位作者 Zhi WANG Zheng LIU Ping-li MAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第3期666-678,共13页
A novel extrusion-shearing(ES) composite process was designed to fabricate fine-grained, high strength and tough magnesium alloy. The structural parameters of an ES die were optimized by conducting an orthogonal simul... A novel extrusion-shearing(ES) composite process was designed to fabricate fine-grained, high strength and tough magnesium alloy. The structural parameters of an ES die were optimized by conducting an orthogonal simulation experiment using finite element software Deform-3D, and Mg-3 Zn-0.6 Ca-0.6 Zr(ZXK310) alloy was processed using the ES die. The results show that the optimized structural parameters of ES die are extrusion angle(α) of 90°, extrusion section height(h) of 15 mm and inner fillet radius(r) of 10 mm. After ES at an extrusion temperature and a die temperature of 350 °C, ZXK310 alloy exhibited good ES forming ability, and obvious dynamic recrystallization occurred in the forming area. The grain size decreased from 1.42 μm of extrusion area to 0.85 μm of the forming area. Owing to the pinning of second phase and formation of ultrafine grains, the tensile strength, yield strength and elongation of alloy reached 362 MPa, 289 MPa and 21.7%, respectively. 展开更多
关键词 Mg−Zn−Ca−Zr alloy extrusion−shearing process die design dynamic recrystallization mechanical properties
下载PDF
Plant-based meat substitutes by high-moisture extrusion:Visualizing the whole process in data systematically from raw material to the products 被引量:2
12
作者 ZHANG Jin-chuang MENG Zhen +5 位作者 CHENG Qiong-ling LI Qi-zhai ZHANG Yu-jie LIU Li SHI Ai-min WANG Qiang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第8期2435-2444,共10页
High-moisture extrusion technology should be considered one of the best choices for producing plant-based meat substitutes with the rich fibrous structure offered by real animal meat products.Unfortunately,the extrusi... High-moisture extrusion technology should be considered one of the best choices for producing plant-based meat substitutes with the rich fibrous structure offered by real animal meat products.Unfortunately,the extrusion process has been seen as a“black box”with limited information about what occurs inside,causing serious obstacles in developing meat substitutes.This study designed a high-moisture extrusion process and developed 10 new plant-based meat substitutes comparable to the fibrous structure of real animal meat.The study used the Feature-Augmented Principal Component Analysis(FA-PCA)method to visualize and understand the whole extrusion process in three ways systematically and accurately.It established six sets of mathematical models of the high-moisture extrusion process based on 8000 pieces of data,including five types of parameters.The FA-PCA method improved the R^(2) values significantly compared with the PCA method.The Way 3 was the best to predict product quality(Z),demonstrating that the gradually molecular conformational changes(Y^(n'))were critical in controlling the final quality of the plant-based meat substitutes.Moreover,the first visualization platform software for the high-moisture extrusion process has been established to clearly show the“black box”by combining the virtual simulation technology.Through the software,some practice work such as equipment installation,parameter adjustment,equipment disassembly,and data prediction can be easily achieved. 展开更多
关键词 plant-based meat substitutes high-moisture extrusion process extrusion parameters models visualization platform software
下载PDF
Effect of hot extrusion process on microstructure and mechanical properties of hypereutectic Al-Si alloys 被引量:3
13
作者 Li Runxia Yu Fuxiao Zuo Liang 《China Foundry》 SCIE CAS 2011年第1期145-149,共5页
The hypereutectic Al-Si alloy was fabricated by hot extrusion process after solidified under electromagnetic stirring,and the microstructure and mechanical properties of the alloy were studied.The results show that th... The hypereutectic Al-Si alloy was fabricated by hot extrusion process after solidified under electromagnetic stirring,and the microstructure and mechanical properties of the alloy were studied.The results show that the ultimate tensile strength and elongation of the alloy reached 229.5 MPa and 4.6%,respectively with the extrusion ratio of 10,and 263.2 MPa and 5.4%,respectively with extrusion ratio of 20.This indicates that the mechanical properties of the alloy are obviously improved with the increase of extrusion ratio.After hot extruded,the primary Si,eutectic Si,Mg2Si,AlNi,Al7Cu4Ni and Al-Si-Mn-Fe-Cr-Mo phases are refined to different extent,and the efficiency of refinement is obvious more and more with the increase of extrusion ratio.After T6 heat treatment,the sharp corners of these phases become passivated and roundish,and the mechanical properties are improved.The ultimate tensile strength of the extruded alloy after T6 heat treatment reaches 335.3 MPa with extrusion ratio of 10 and 353.6 MPa with extrusion ratio of 20. 展开更多
关键词 hypereutectic Al-Si alloy electromagnetic stirring hot extrusion process primary Si phase
下载PDF
Optimization of extrusion process parameters of Incoloy028 alloy based on hot compression test and simulation 被引量:2
14
作者 Zhi-qiang YU Gen-shu ZHOU +1 位作者 Lei-feng TUO Cong-fei SONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第11期2464-2473,共10页
True stress?true strain curves of Incoloy028alloy at high temperature and strain rate were investigated by hot compression test.These curves show that the maximum flow stress decreases with the increase in temperature... True stress?true strain curves of Incoloy028alloy at high temperature and strain rate were investigated by hot compression test.These curves show that the maximum flow stress decreases with the increase in temperature and the decrease in strain rate.FEM simulation was employed to investigate the influence of temperature,extrusion speed and friction coefficient on the extrusion load,stress,strain and strain rate in the extrusion process.The increase of extrusion temperature results in decrease of load and deformation resistance,but has little influence on strain and strain rate.When extrusion speed changes between200and350mm/s,no obvious change about extrusion load can be found.Sharp peak value up to42500kN emerges in the extrusion load curve and the extrusion process becomes unstable seriously when extrusion speed rises up to400mm/s.Both stress and strain rate increase with the raise of extrusion speed.When friction coefficient is between0.02and0.03,deformation resistance is about160MPa and the strain rate can be limited below70s?1.Successful production of Incoloy028tube verifies the optimized parameters by FEM simulation analysis,and mechanical tests results of the products meet the required properties. 展开更多
关键词 Incoloy028 alloy hot extrusion compression process parameter FEM simulation
下载PDF
Deformation division of metal flow behavior during extrusion process of 7075 aluminum alloy 被引量:2
15
作者 李峰 初冠南 刘晓晶 《Journal of Central South University》 SCIE EI CAS 2009年第5期738-742,共5页
To reduce defects caused by non-homogeneous metal flow in conventional extrusion,a die with guiding angle was designed to improve the metal flow behavior. The characteristic quantities such as the second invariant of ... To reduce defects caused by non-homogeneous metal flow in conventional extrusion,a die with guiding angle was designed to improve the metal flow behavior. The characteristic quantities such as the second invariant of the deviator stress J2 and Lode's coefficient μ were employed for the division of deformation area. The results show that when the metal is extruded with the guiding angle,no metal flow interface forms at the container's bottom,the dead zone completely disappears,the deformation types of the metal in the plastic deformation area change from three types to one type of tension,and the homogeneity of the deformation as well as metal flow are greatly improved. The non-homogeneous metal flow at the final stage of extrusion is improved,reducing the shrinkage hole at the axis end. The radial stress of the furthest point from the axis is transformed from tensile stress to compressive stress and the axial stress,and decreased from 70.8 to 34.8 MPa. Therefore,the surface cracks caused by additional stress are greatly reduced. 展开更多
关键词 extrusion process flow defect deformation division
下载PDF
Effects of process parameters and die geometry on longitudinal welds quality in aluminum porthole die extrusion process 被引量:2
16
作者 刘健 林高用 +2 位作者 冯迪 邹艳明 孙利平 《Journal of Central South University》 SCIE EI CAS 2010年第4期688-696,共9页
By using the rigid-visco-plasticity finite element method, the welding process of aluminum porthole die extrusion to form a tube was simulated based on Deform-3D software. The welding chamber height (H), back dimens... By using the rigid-visco-plasticity finite element method, the welding process of aluminum porthole die extrusion to form a tube was simulated based on Deform-3D software. The welding chamber height (H), back dimension of die leg (D), process velocity and initial billet temperature were used in FE simulations so as to determine the conditions in which better longitudinal welding quality can be obtained. According to K criterion, the local welding parameters such as welding pressure, effective stress and welding path length on the welding plane are linked to longitudinal welds quality. Simulation turns out that pressure-to-effective stress ratio (ρ/σ) and welding path length (L) are the key factors affecting the welding quality, Higher welding chamber best and sharper die leg give better welding quality. When H=10 mm and D=0.4 mm, the longitudinal welds have the best quality. Higher process velocity decreases welds quality. The proper velocity is 10 mm/s for this simulation. In a certain range, higher temperature is beneficial to the longitudinal welds. It is found that both 450 and 465℃ can satisfy the requirements of the longitudinal welds. 展开更多
关键词 aluminum alloy longitudinal welds porthole die die geometry extrusion process K criterion
下载PDF
Deformation Processed Cu-15 wt pct Cr Composite Synthesized by Hot Hydrostatic Extrusion of Mechanical Milled Powders 被引量:1
17
作者 Jinglei LIU, Zuyan LIU and Erde WANGSchool of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2003年第5期507-508,共2页
A novel technique was developed for the preparation of Cu-15 wt pct Cr composite with high strength and conductivity. The composite powders with refined microstructure and curly lamellae strengthening phase was first ... A novel technique was developed for the preparation of Cu-15 wt pct Cr composite with high strength and conductivity. The composite powders with refined microstructure and curly lamellae strengthening phase was first prepared by mechanical milling in favorite milling time and then were hot hydrostatic extruded after pre-densification with sintering or hot pressing. It was shown that the extrusion densified the composite powders well and at the same time the chaos curled strengthening phase was aligned into lines and further deformed as strengthening ribbons. The deformation processed Cu-15 wt pct Cr composite prepared by this technique is of superior conductivity, strength and thermal stability. 展开更多
关键词 Mechanical milling Hydrostatic extrusion Deformation processed composite Copper-base composite
下载PDF
Fabrication of AZ31 alloy wire by continuous semisolid extrusion process 被引量:1
18
作者 管仁国 赵占勇 +3 位作者 孙小平 黄红乾 戴春光 张秋生 《中国有色金属学会会刊:英文版》 CSCD 2010年第S3期729-733,共5页
A novel technology of continuous semisolid extrusion Process(CSEP) was adopted to produce AZ31 alloy structural materials.Effects of technological conditions on the microstructures of AZ31 alloy during CSEP were studi... A novel technology of continuous semisolid extrusion Process(CSEP) was adopted to produce AZ31 alloy structural materials.Effects of technological conditions on the microstructures of AZ31 alloy during CSEP were studied.During the casting process,the non-uniform distribution of microstructures was found in the roll-shoe gap.Microstructure evolution from dendrite to rosette or spherical grains was observed during the casting process by CSEP.The results show that high casting temperature and large cooling intensity can cause non-equilibrium solidification region near the roll surface,large roll-shoe gap width and high cooling intensity can lead to the formation of discontinuous solidification microstructure and slip plane near the shoe surface,which will finally cause the failure of the casting process.The proper casting temperature range of 730-750 °C,the roll cooling intensity of 0.4 L/s and the roll-shoe gap width of less than 10 mm are suggested.Under the suggested conditions,the product with diameter of 10 mm of AZ31 alloy with smooth surface and homogeneous striped microstructure is obtained.The average strength of the product after heat treatment reaches 270 MPa,and the elongation is 16%. 展开更多
关键词 CONTINUOUS SEMISOLID extrusion process AZ31 alloy TECHNOLOGICAL conditions microstructure PROPERTY
下载PDF
Prediction of central bursting defects in rod extrusion process with upper bound analysis method 被引量:2
19
作者 Amir PARGHAZEH Heshmatollah HAGHIGHAT 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第11期2892-2899,共8页
The prediction of central bursting defects in the rod extrusion process through conical dies using the upper bound analysisis investigated. A kinematically admissible velocity field, including the radial and angular v... The prediction of central bursting defects in the rod extrusion process through conical dies using the upper bound analysisis investigated. A kinematically admissible velocity field, including the radial and angular velocity components, is proposed. A newcriterion is presented to predict the occurrence of the central bursting defects. Parameter bobt, which represents the risk probability ofcracking, is proposed. It is calculated using the shape of the boundary at the entrance by minimizing the total power dissipationduring the extrusion process. When bobt is equal to or greater than bcr, central bursting occurs. Furthermore, the quantitativerelationships between central bursting defects and process parameters (semi die angle, reduction in area and frictional factor) arestudied. The results show that the central bursting defects are affected primarily by the reduction in area and the friction factor. Thepresented criterion is verified by comparing with the FEM simulation data and the results of the published paper. 展开更多
关键词 central bursting defect upper bound analysis method rod extrusion process
下载PDF
Effect of extrusion processing parameters on microstructure and mechanical properties of as-extruded AZ31 sheets 被引量:5
20
作者 蒋斌 高亮 +2 位作者 黄光杰 丁培道 王健 《中国有色金属学会会刊:英文版》 CSCD 2008年第A01期160-164,共5页
The AZ31 sheets were prepared by extrusion.The effects of the extrusion processing parameters including the temperature extrusion ratio,and structure of the extrusion die on the microstructure and mechanical propertie... The AZ31 sheets were prepared by extrusion.The effects of the extrusion processing parameters including the temperature extrusion ratio,and structure of the extrusion die on the microstructure and mechanical properties of the as-extruded AZ31 sheets were investigated.The results show that the partial grains grow abnormally.and the mechanical and anisotropic properties of the as-extruded AZ31 sheets have little change at the extrusion temperatures of 380-400℃and the extrusion ratio of 13.3.With the increase of the extrusion ratio,the microstructure of the as-extruded AZ31 sheets by conventional die becomes finer and more uniform,and the elongation rate increases,but the strength decreases and its anisotropy becomes worse.Under the porthole die,finer and more uniform microstructure,higher mechanical properties and better anisotropy can be brought for the as-extruded AZ31 sheets The extruded AZ31 sheets by the porthole die have better anneal process of 300℃and 1 h. 展开更多
关键词 AZ31镁合金 微观组织 性能 挤压处理
下载PDF
上一页 1 2 75 下一页 到第
使用帮助 返回顶部