A357-SiCp/A357 layered composites were prepared using a semi-solid vacuum stirring suction casting method.The microstructures,mechanical properties,and thermal conductivities of the composites fabricated under differe...A357-SiCp/A357 layered composites were prepared using a semi-solid vacuum stirring suction casting method.The microstructures,mechanical properties,and thermal conductivities of the composites fabricated under different suction casting processes were compared.Additionally,the microstructural evolution characteristics and performance enhancement mechanism of the A357-SiCp/A357 layered composites were discussed.The results demonstrate that suction casting at 610°C with a low solid phase ratio can significantly enhance the material density and reduce the agglomeration of SiCp.The A357-SiC_(p)/A357 interface is clear and straight with good bonding.With an increase in the suction casting temperature,the bending resistance and thermal conductivity of the A357-SiC_(p)/A357 layered composites exhibit a trend of significantly increase at first and then slowly decrease owing to casting defects,interface bonding,and SiCp distribution.Compared with SiCp/A357 composites,the bending strength,deflection,and thermal conductivity of the A357-SiCp/A357 layered composites increase from 257 MPa,1.07 mm,and 155.72 W·(m·K)^(-1) to 298 MPa,2.1 mm,and 169.86 W·(m·K)^(-1),respectively.This study provides a reference for improving the rheological casting of aluminum matrix layered composites.展开更多
The electromagnetic direct chill (EMDC) casting process is a welt-established production route for aluminum alloy ingot, however, the skin effect restricts the casting diameter. In order to avoid this problem, annul...The electromagnetic direct chill (EMDC) casting process is a welt-established production route for aluminum alloy ingot, however, the skin effect restricts the casting diameter. In order to avoid this problem, annulus electromagnetic direct chill (A-EMDC) casting process has been developed. A three-dimension finite element computational model of A-EMDC casting process was established by using ANSYS Magnetic-Nodal programs and FLOTRAN CFD programs. Microstruetures of A-EMDC casting semi-solid Al-6Si-3Cu-Mg alloy billets were investigated. Two pairs of vortexes occur within the crystallizer with opposite direction in A-EMDC. The annulus gap is advantageous to increasing circulate flow, reducing the temperature gradient as well as shallowing liquid sump depth. The microstructure obtained by A-EMDC is globular or rosette-like, and the microstructure is homogeneous in the billet.展开更多
The effect of pouring temperature, electromagnetic stirring power and holding process on semi-solid A356 aluminum alloy slurry was investigated, then the slurry was squeeze-cast. The results show that when the pouring...The effect of pouring temperature, electromagnetic stirring power and holding process on semi-solid A356 aluminum alloy slurry was investigated, then the slurry was squeeze-cast. The results show that when the pouring temperatures are properly above the liquidus line, for example 630-650 ℃, the slurry with spherical primary α(Al) grains can be prepared under the stirring power of 1.27 kW. The slurry is then homogeneously held for a short time, and the primary α(Al) grains are further ripened and distributed evenly in the slurry. The results of the rheo-squeezed casting experiments show that the injection specific pressure has a great effect on the filling ability of the semi-solid A356 aluminum alloy slurry, and the higher the injection specific pressure is, the better the ability for the slurry to fill the mould cavity is. When the injection specific pressure is equal to or above 34 MPa, the whole and compact rheo-squeezed castings can be obtained. The microstructure of the castings indicates that the shape, size and numbers of the primary α(Al) grains in different parts of the castings are highly consistent. After being held at 535 ℃ for 5 h and then aged at 155 ℃ for 12 h, the ultimate strength of the rheo-squeezed castings can reach 300-320 MPa, the yield strength 230-255 MPa, and the elongation 11%-15%.展开更多
Recently, a semi-solid metal processing has been acknowledged as a cost-effective technique to be able to manufacture high quality product for the transportation industry. In this study a hypo-eutectic Al alloy was fa...Recently, a semi-solid metal processing has been acknowledged as a cost-effective technique to be able to manufacture high quality product for the transportation industry. In this study a hypo-eutectic Al alloy was fabricated by means of an electromagnetic stirrer in continuous casting process and the microstructural change during solidification due to a fluid flow by electromagnetic stirring was examined. Due to the forced fluid flow during solidification a dendritic phase of primary α phase of Al alloy was turned into a globular phase, which can make the Al alloy get a thixotropic behavior in the semi-solid region. In order to establish the quantitative relationship between microstructure and the process parameters, the morphology shape, a silicon distribution and a size of primary α phase were observed according to casting speed in continuous casting machine. The primary α phase was turned into the degenerate dendrites approaching a spherical configuration with increasing casting speed. The fine-grained and equiaxed microstructure appeared at higher casting speed. A segregation behavior of Si element was declined with increasing casting speed and a very uniform distribution of Si element was observed on the billet at a casting speed of 600 mm·min-1. A thickness of the solidifying shell of the billet was shortened with increasing the casting speed.展开更多
The nondendritic semi-solid slurry preparation of high chromium cast iron Cr20Mo2 has been studied in this paper. The experiments show that the proeutectic austenitic particles are more spherical under a larger stirri...The nondendritic semi-solid slurry preparation of high chromium cast iron Cr20Mo2 has been studied in this paper. The experiments show that the proeutectic austenitic particles are more spherical under a larger stirring power condition, even if the stirring time is shorter, while the proeutectic austenitic particles are not very much spherical under a smaller stirring power condition and some proeutectic austenitic dendrites also exist, even if the stirring time is very long. The experiments also show that when stirred for 5-6 minutes under the test condition, the semi-solid slurry with 40vol.%-50vol.% solid fraction and spherical proeutectic austenite in the size of 50-80μm can be obtained.展开更多
Liquid metal flow behavior in round strands continuous casting under intermittently reversing direction electromagnetic stirring was measured by ultrasonic Doppler velocity-meter in a physical simulation system in ord...Liquid metal flow behavior in round strands continuous casting under intermittently reversing direction electromagnetic stirring was measured by ultrasonic Doppler velocity-meter in a physical simulation system in order to investigate the effects of time interval(t_i)of periodically reversed magnetic field on the spatial and temporal flow.The results show that under electromagnetic stirring with direction reserved magnetic field,there's a periodically change of the metal flow velocity and rotation direction with the periodically direction changing of the magnetic field.From both the experimental and mathematical model calculation results,it is found that when t_i is nearly equal to the time required for the metal flow speeding to the maximum velocity from still and decreases to zero again,there is a critical value of the rate of dynamic pressure,which means the wash effect of the liquid metal flow.On this point,rate of dynamic pressure was proposed to be a criterion for optimization the processing of electromagnetic stirring.展开更多
文摘A357-SiCp/A357 layered composites were prepared using a semi-solid vacuum stirring suction casting method.The microstructures,mechanical properties,and thermal conductivities of the composites fabricated under different suction casting processes were compared.Additionally,the microstructural evolution characteristics and performance enhancement mechanism of the A357-SiCp/A357 layered composites were discussed.The results demonstrate that suction casting at 610°C with a low solid phase ratio can significantly enhance the material density and reduce the agglomeration of SiCp.The A357-SiC_(p)/A357 interface is clear and straight with good bonding.With an increase in the suction casting temperature,the bending resistance and thermal conductivity of the A357-SiC_(p)/A357 layered composites exhibit a trend of significantly increase at first and then slowly decrease owing to casting defects,interface bonding,and SiCp distribution.Compared with SiCp/A357 composites,the bending strength,deflection,and thermal conductivity of the A357-SiCp/A357 layered composites increase from 257 MPa,1.07 mm,and 155.72 W·(m·K)^(-1) to 298 MPa,2.1 mm,and 169.86 W·(m·K)^(-1),respectively.This study provides a reference for improving the rheological casting of aluminum matrix layered composites.
基金Project(2009AA03Z534) supported by the National Hi-tech Research and Development Program of ChinaProject(2006CB605203) supported by the National Basic Research Program of China
文摘The electromagnetic direct chill (EMDC) casting process is a welt-established production route for aluminum alloy ingot, however, the skin effect restricts the casting diameter. In order to avoid this problem, annulus electromagnetic direct chill (A-EMDC) casting process has been developed. A three-dimension finite element computational model of A-EMDC casting process was established by using ANSYS Magnetic-Nodal programs and FLOTRAN CFD programs. Microstruetures of A-EMDC casting semi-solid Al-6Si-3Cu-Mg alloy billets were investigated. Two pairs of vortexes occur within the crystallizer with opposite direction in A-EMDC. The annulus gap is advantageous to increasing circulate flow, reducing the temperature gradient as well as shallowing liquid sump depth. The microstructure obtained by A-EMDC is globular or rosette-like, and the microstructure is homogeneous in the billet.
基金Project(2006AA03Z115) supported by the National Hi-tech Research and Development Program of ChinaProject(2006CB605203) supported by the National Basic Research Program of ChinaProject(50774007) supported by the National Natural Science Foundation of China
文摘The effect of pouring temperature, electromagnetic stirring power and holding process on semi-solid A356 aluminum alloy slurry was investigated, then the slurry was squeeze-cast. The results show that when the pouring temperatures are properly above the liquidus line, for example 630-650 ℃, the slurry with spherical primary α(Al) grains can be prepared under the stirring power of 1.27 kW. The slurry is then homogeneously held for a short time, and the primary α(Al) grains are further ripened and distributed evenly in the slurry. The results of the rheo-squeezed casting experiments show that the injection specific pressure has a great effect on the filling ability of the semi-solid A356 aluminum alloy slurry, and the higher the injection specific pressure is, the better the ability for the slurry to fill the mould cavity is. When the injection specific pressure is equal to or above 34 MPa, the whole and compact rheo-squeezed castings can be obtained. The microstructure of the castings indicates that the shape, size and numbers of the primary α(Al) grains in different parts of the castings are highly consistent. After being held at 535 ℃ for 5 h and then aged at 155 ℃ for 12 h, the ultimate strength of the rheo-squeezed castings can reach 300-320 MPa, the yield strength 230-255 MPa, and the elongation 11%-15%.
基金This work was financiallysupported bythe KISTProgram(No.2E19470)and by the Components&Materials Technology Development Program of Ministry of Commerce,Industry and Energy of Korea.
文摘Recently, a semi-solid metal processing has been acknowledged as a cost-effective technique to be able to manufacture high quality product for the transportation industry. In this study a hypo-eutectic Al alloy was fabricated by means of an electromagnetic stirrer in continuous casting process and the microstructural change during solidification due to a fluid flow by electromagnetic stirring was examined. Due to the forced fluid flow during solidification a dendritic phase of primary α phase of Al alloy was turned into a globular phase, which can make the Al alloy get a thixotropic behavior in the semi-solid region. In order to establish the quantitative relationship between microstructure and the process parameters, the morphology shape, a silicon distribution and a size of primary α phase were observed according to casting speed in continuous casting machine. The primary α phase was turned into the degenerate dendrites approaching a spherical configuration with increasing casting speed. The fine-grained and equiaxed microstructure appeared at higher casting speed. A segregation behavior of Si element was declined with increasing casting speed and a very uniform distribution of Si element was observed on the billet at a casting speed of 600 mm·min-1. A thickness of the solidifying shell of the billet was shortened with increasing the casting speed.
基金supported by the National Natural Science Foundation of China(No.59995440)
文摘The nondendritic semi-solid slurry preparation of high chromium cast iron Cr20Mo2 has been studied in this paper. The experiments show that the proeutectic austenitic particles are more spherical under a larger stirring power condition, even if the stirring time is shorter, while the proeutectic austenitic particles are not very much spherical under a smaller stirring power condition and some proeutectic austenitic dendrites also exist, even if the stirring time is very long. The experiments also show that when stirred for 5-6 minutes under the test condition, the semi-solid slurry with 40vol.%-50vol.% solid fraction and spherical proeutectic austenite in the size of 50-80μm can be obtained.
基金Item Sponsored by National Natural Science Foundation of China(No.50874133)
文摘Liquid metal flow behavior in round strands continuous casting under intermittently reversing direction electromagnetic stirring was measured by ultrasonic Doppler velocity-meter in a physical simulation system in order to investigate the effects of time interval(t_i)of periodically reversed magnetic field on the spatial and temporal flow.The results show that under electromagnetic stirring with direction reserved magnetic field,there's a periodically change of the metal flow velocity and rotation direction with the periodically direction changing of the magnetic field.From both the experimental and mathematical model calculation results,it is found that when t_i is nearly equal to the time required for the metal flow speeding to the maximum velocity from still and decreases to zero again,there is a critical value of the rate of dynamic pressure,which means the wash effect of the liquid metal flow.On this point,rate of dynamic pressure was proposed to be a criterion for optimization the processing of electromagnetic stirring.