To explore lower rotating potint nutrient vessels of sural nerve flap with distant pedicled repairing the soft tissue defect of foot and ankle.Methods Lay a foundation of anatomic studying from february 2003 to March ...To explore lower rotating potint nutrient vessels of sural nerve flap with distant pedicled repairing the soft tissue defect of foot and ankle.Methods Lay a foundation of anatomic studying from february 2003 to March 2004,using lower rotating point nutrient vessels of sural nerve flap with distant pedicled repairing the soft tissue defect of foot and ankle in 11 cases.Cause of injuring:traffic accident 7 cases,crushing 1 case,saw injury 1 case,skin cancer 1 case,chronic ulcer 1 case.Areas:foot heel 6 cases,shank lower section 2 cases,heel tendon 2 cases,the distant back of the foot 1 case.Using the flap axis point was 1~3 cm above the pin of the external heel,average 2 cm.The scope of the flap was 6.0 cm×8.0 cm~12.0 cm~18.0 cm.Results All sural nerve flaps were alive.Of them,2 cases have distant part necrosis,accompanying with subcutaneous tissue,1 case heels after change dressings,another heels after skin grafting.All case can walk as usual,the flap was wear-resisting and keenly feel.Conclusion Lower rotating point nutrient vessels of sural nerve flap,donner area was fine,available area was large,skin in the pink,easy grafting,without main blood vessel damage,survival rate high,it is a good donner area in repairing around heel,foot and shank lower section.7 refs,1 tab.展开更多
Peripheral nerve injuries induce a severe motor and sensory deficit. Since the availability of autologous nerve transplants for nerve repair is very limited, alternative treatment strategies are sought, including the ...Peripheral nerve injuries induce a severe motor and sensory deficit. Since the availability of autologous nerve transplants for nerve repair is very limited, alternative treatment strategies are sought, including the use of tubular nerve guidance conduits(tNGCs). However, the use of tNGCs results in poor functional recovery and central necrosis of the regenerating tissue, which limits their application to short nerve lesion defects(typically shorter than 3 cm). Given the importance of vascularization in nerve regeneration, we hypothesized that enabling the growth of blood vessels from the surrounding tissue into the regenerating nerve within the tNGC would help eliminate necrotic processes and lead to improved regeneration. In this study, we reported the application of macroscopic holes into the tubular walls of silk-based tNGCs and compared the various features of these improved silk^(+) tNGCs with the tubes without holes(silk^(–) tNGCs) and autologous nerve transplants in an 8-mm sciatic nerve defect in rats. Using a combination of micro-computed tomography and histological analyses, we were able to prove that the use of silk^(+) tNGCs induced the growth of blood vessels from the adjacent tissue to the intraluminal neovascular formation. A significantly higher number of blood vessels in the silk^(+) group was found compared with autologous nerve transplants and silk^(–), accompanied by improved axon regeneration at the distal coaptation point compared with the silk^(–) tNGCs at 7 weeks postoperatively. In the 15-mm(critical size) sciatic nerve defect model, we again observed a distinct ingrowth of blood vessels through the tubular walls of silk^(+) tNGCs, but without improved functional recovery at 12 weeks postoperatively. Our data proves that macroporous tNGCs increase the vascular supply of regenerating nerves and facilitate improved axonal regeneration in a short-defect model but not in a critical-size defect model. This study suggests that further optimization of the macroscopic holes silk^(+) tNGC approach containing macroscopic holes might result in improved grafting technology suitable for future clinical use.展开更多
Transportation of floating structures for long distance has always been associated with the use of heavy semi transport vessel. The requirements of this type of vessel are always special, and its availability is limit...Transportation of floating structures for long distance has always been associated with the use of heavy semi transport vessel. The requirements of this type of vessel are always special, and its availability is limited. To prepare for the future development of the South China Sea deepwater projects, COOEC has recently built a heavy lift transport vessel - Hai Yang Shi You 278 (HYSY278). This semi-submersible vessel has displacement capacity of 50k DWT, and a breath of 42 m. Understanding the vessel's applicability and preparing its use for future deepwater projects are becoming imminent need. This paper reviews the critical issues associated with the floating structure transportation and performs detailed analysis of two designed floating structures during transportation. The newly built COOEC transportation vessel HYSY278 will be used to dry transport the floating structures from COOEC fabrication yard in Qingdao to the oil field in the South China Sea. The entire process will start with load-out/float-offthe floating structures from the construction sites, offload the platform from the vessel if needed, dry transport floating structures through a long distance, and finally offload the platform. Both hydrodynamic and struc^tral analyses are performed to evaluate transport vessel and floating structures. Critical issues associated with the transportation and offloading of platform from the vessel will be studied in detail. Detailed study is performed to evaluate the response of the system during this phase and additional work needed to make the vessel feasible for use of this purpose. The results demonstrate that with proper modifications, HYSY278 can effectively be used for transporting structures with proper arrangement and well-prepared operation. The procedure and details are presented on the basis of study results. Special attentions associated with future use will also be discussed based on the results from analysis.展开更多
文摘To explore lower rotating potint nutrient vessels of sural nerve flap with distant pedicled repairing the soft tissue defect of foot and ankle.Methods Lay a foundation of anatomic studying from february 2003 to March 2004,using lower rotating point nutrient vessels of sural nerve flap with distant pedicled repairing the soft tissue defect of foot and ankle in 11 cases.Cause of injuring:traffic accident 7 cases,crushing 1 case,saw injury 1 case,skin cancer 1 case,chronic ulcer 1 case.Areas:foot heel 6 cases,shank lower section 2 cases,heel tendon 2 cases,the distant back of the foot 1 case.Using the flap axis point was 1~3 cm above the pin of the external heel,average 2 cm.The scope of the flap was 6.0 cm×8.0 cm~12.0 cm~18.0 cm.Results All sural nerve flaps were alive.Of them,2 cases have distant part necrosis,accompanying with subcutaneous tissue,1 case heels after change dressings,another heels after skin grafting.All case can walk as usual,the flap was wear-resisting and keenly feel.Conclusion Lower rotating point nutrient vessels of sural nerve flap,donner area was fine,available area was large,skin in the pink,easy grafting,without main blood vessel damage,survival rate high,it is a good donner area in repairing around heel,foot and shank lower section.7 refs,1 tab.
基金supported by the Lorenz B?hler Fonds,#2/19 (obtained by the Neuroregeneration Group,Ludwig Boltzmann Institute for Traumatology)the City of Vienna project ImmunTissue,MA23#30-11 (obtained by the Department Life Science Engineering,University of Applied Sciences Technikum Wien)。
文摘Peripheral nerve injuries induce a severe motor and sensory deficit. Since the availability of autologous nerve transplants for nerve repair is very limited, alternative treatment strategies are sought, including the use of tubular nerve guidance conduits(tNGCs). However, the use of tNGCs results in poor functional recovery and central necrosis of the regenerating tissue, which limits their application to short nerve lesion defects(typically shorter than 3 cm). Given the importance of vascularization in nerve regeneration, we hypothesized that enabling the growth of blood vessels from the surrounding tissue into the regenerating nerve within the tNGC would help eliminate necrotic processes and lead to improved regeneration. In this study, we reported the application of macroscopic holes into the tubular walls of silk-based tNGCs and compared the various features of these improved silk^(+) tNGCs with the tubes without holes(silk^(–) tNGCs) and autologous nerve transplants in an 8-mm sciatic nerve defect in rats. Using a combination of micro-computed tomography and histological analyses, we were able to prove that the use of silk^(+) tNGCs induced the growth of blood vessels from the adjacent tissue to the intraluminal neovascular formation. A significantly higher number of blood vessels in the silk^(+) group was found compared with autologous nerve transplants and silk^(–), accompanied by improved axon regeneration at the distal coaptation point compared with the silk^(–) tNGCs at 7 weeks postoperatively. In the 15-mm(critical size) sciatic nerve defect model, we again observed a distinct ingrowth of blood vessels through the tubular walls of silk^(+) tNGCs, but without improved functional recovery at 12 weeks postoperatively. Our data proves that macroporous tNGCs increase the vascular supply of regenerating nerves and facilitate improved axonal regeneration in a short-defect model but not in a critical-size defect model. This study suggests that further optimization of the macroscopic holes silk^(+) tNGC approach containing macroscopic holes might result in improved grafting technology suitable for future clinical use.
基金funded by the State Key Project "Installation Technical Study for Deepwater Floating Structure"
文摘Transportation of floating structures for long distance has always been associated with the use of heavy semi transport vessel. The requirements of this type of vessel are always special, and its availability is limited. To prepare for the future development of the South China Sea deepwater projects, COOEC has recently built a heavy lift transport vessel - Hai Yang Shi You 278 (HYSY278). This semi-submersible vessel has displacement capacity of 50k DWT, and a breath of 42 m. Understanding the vessel's applicability and preparing its use for future deepwater projects are becoming imminent need. This paper reviews the critical issues associated with the floating structure transportation and performs detailed analysis of two designed floating structures during transportation. The newly built COOEC transportation vessel HYSY278 will be used to dry transport the floating structures from COOEC fabrication yard in Qingdao to the oil field in the South China Sea. The entire process will start with load-out/float-offthe floating structures from the construction sites, offload the platform from the vessel if needed, dry transport floating structures through a long distance, and finally offload the platform. Both hydrodynamic and struc^tral analyses are performed to evaluate transport vessel and floating structures. Critical issues associated with the transportation and offloading of platform from the vessel will be studied in detail. Detailed study is performed to evaluate the response of the system during this phase and additional work needed to make the vessel feasible for use of this purpose. The results demonstrate that with proper modifications, HYSY278 can effectively be used for transporting structures with proper arrangement and well-prepared operation. The procedure and details are presented on the basis of study results. Special attentions associated with future use will also be discussed based on the results from analysis.