In this paper,we introduce a novel Multi-scale and Auto-tuned Semi-supervised Deep Subspace Clustering(MAS-DSC)algorithm,aimed at addressing the challenges of deep subspace clustering in high-dimensional real-world da...In this paper,we introduce a novel Multi-scale and Auto-tuned Semi-supervised Deep Subspace Clustering(MAS-DSC)algorithm,aimed at addressing the challenges of deep subspace clustering in high-dimensional real-world data,particularly in the field of medical imaging.Traditional deep subspace clustering algorithms,which are mostly unsupervised,are limited in their ability to effectively utilize the inherent prior knowledge in medical images.Our MAS-DSC algorithm incorporates a semi-supervised learning framework that uses a small amount of labeled data to guide the clustering process,thereby enhancing the discriminative power of the feature representations.Additionally,the multi-scale feature extraction mechanism is designed to adapt to the complexity of medical imaging data,resulting in more accurate clustering performance.To address the difficulty of hyperparameter selection in deep subspace clustering,this paper employs a Bayesian optimization algorithm for adaptive tuning of hyperparameters related to subspace clustering,prior knowledge constraints,and model loss weights.Extensive experiments on standard clustering datasets,including ORL,Coil20,and Coil100,validate the effectiveness of the MAS-DSC algorithm.The results show that with its multi-scale network structure and Bayesian hyperparameter optimization,MAS-DSC achieves excellent clustering results on these datasets.Furthermore,tests on a brain tumor dataset demonstrate the robustness of the algorithm and its ability to leverage prior knowledge for efficient feature extraction and enhanced clustering performance within a semi-supervised learning framework.展开更多
With the successive application of deep learning(DL)in classification tasks,the DL-based modulation classification method has become the preference for its state-of-the-art performance.Nevertheless,once the DL recogni...With the successive application of deep learning(DL)in classification tasks,the DL-based modulation classification method has become the preference for its state-of-the-art performance.Nevertheless,once the DL recognition model is pre-trained with fixed classes,the pre-trained model tends to predict incorrect results when identifying incremental classes.Moreover,the incremental classes are usually emergent without label information or only a few labeled samples of incremental classes can be obtained.In this context,we propose a graphbased semi-supervised approach to address the fewshot classes-incremental(FSCI)modulation classification problem.Our proposed method is a twostage learning method,specifically,a warm-up model is trained for classifying old classes and incremental classes,where the unlabeled samples of incremental classes are uniformly labeled with the same label to alleviate the damage of the class imbalance problem.Then the warm-up model is regarded as a feature extractor for constructing a similar graph to connect labeled samples and unlabeled samples,and the label propagation algorithm is adopted to propagate the label information from labeled nodes to unlabeled nodes in the graph to achieve the purpose of incremental classes recognition.Simulation results prove that the proposed method is superior to other finetuning methods and retrain methods.展开更多
The limited labeled sample data in the field of advanced security threats detection seriously restricts the effective development of research work.Learning the sample labels from the labeled and unlabeled data has rec...The limited labeled sample data in the field of advanced security threats detection seriously restricts the effective development of research work.Learning the sample labels from the labeled and unlabeled data has received a lot of research attention and various universal labeling methods have been proposed.However,the labeling task of malicious communication samples targeted at advanced threats has to face the two practical challenges:the difficulty of extracting effective features in advance and the complexity of the actual sample types.To address these problems,we proposed a sample labeling method for malicious communication based on semi-supervised deep neural network.This method supports continuous learning and optimization feature representation while labeling sample,and can handle uncertain samples that are outside the concerned sample types.According to the experimental results,our proposed deep neural network can automatically learn effective feature representation,and the validity of features is close to or even higher than that of features which extracted based on expert knowledge.Furthermore,our proposed method can achieve the labeling accuracy of 97.64%~98.50%,which is more accurate than the train-then-detect,kNN and LPA methodsin any labeled-sample proportion condition.The problem of insufficient labeled samples in many network attack detecting scenarios,and our proposed work can function as a reference for the sample labeling tasks in the similar real-world scenarios.展开更多
Non-intrusive load monitoring(NILM)is a technique which extracts individual appliance consumption and operation state change information from the aggregate power consumption made by a single residential or commercial ...Non-intrusive load monitoring(NILM)is a technique which extracts individual appliance consumption and operation state change information from the aggregate power consumption made by a single residential or commercial unit.NILM plays a pivotal role in modernizing building energy management by disaggregating total energy consumption into individual appliance-level insights.This enables informed decision-making,energy optimization,and cost reduction.However,NILM encounters substantial challenges like signal noise,data availability,and data privacy concerns,necessitating advanced algorithms and robust methodologies to ensure accurate and secure energy disaggregation in real-world scenarios.Deep learning techniques have recently shown some promising results in NILM research,but training these neural networks requires significant labeled data.Obtaining initial sets of labeled data for the research by installing smart meters at the end of consumers’appliances is laborious and expensive and exposes users to severe privacy risks.It is also important to mention that most NILM research uses empirical observations instead of proper mathematical approaches to obtain the threshold value for determining appliance operation states(On/Off)from their respective energy consumption value.This paper proposes a novel semi-supervised multilabel deep learning technique based on temporal convolutional network(TCN)and long short-term memory(LSTM)for classifying appliance operation states from labeled and unlabeled data.The two thresholding techniques,namely Middle-Point Thresholding and Variance-Sensitive Thresholding,which are needed to derive the threshold values for determining appliance operation states,are also compared thoroughly.The superiority of the proposed model,along with finding the appliance states through the Middle-Point Thresholding method,is demonstrated through 15%improved overall improved F1micro score and almost 26%improved Hamming loss,F1 and Specificity score for the performance of individual appliance when compared to the benchmarking techniques that also used semi-supervised learning approach.展开更多
Deep Learning(DL)is such a powerful tool that we have seen tremendous success in areas such as Computer Vision,Speech Recognition,and Natural Language Processing.Since Automated Modulation Classification(AMC)is an imp...Deep Learning(DL)is such a powerful tool that we have seen tremendous success in areas such as Computer Vision,Speech Recognition,and Natural Language Processing.Since Automated Modulation Classification(AMC)is an important part in Cognitive Radio Networks,we try to explore its potential in solving signal modulation recognition problem.It cannot be overlooked that DL model is a complex model,thus making them prone to over-fitting.DL model requires many training data to combat with over-fitting,but adding high quality labels to training data manually is not always cheap and accessible,especially in real-time system,which may counter unprecedented data in dataset.Semi-supervised Learning is a way to exploit unlabeled data effectively to reduce over-fitting in DL.In this paper,we extend Generative Adversarial Networks(GANs)to the semi-supervised learning will show it is a method can be used to create a more dataefficient classifier.展开更多
With the emergence of various intelligent applications,machine learning technologies face lots of challenges including large-scale models,application oriented real-time dataset and limited capabilities of nodes in pra...With the emergence of various intelligent applications,machine learning technologies face lots of challenges including large-scale models,application oriented real-time dataset and limited capabilities of nodes in practice.Therefore,distributed machine learning(DML) and semi-supervised learning methods which help solve these problems have been addressed in both academia and industry.In this paper,the semi-supervised learning method and the data parallelism DML framework are combined.The pseudo-label based local loss function for each distributed node is studied,and the stochastic gradient descent(SGD) based distributed parameter update principle is derived.A demo that implements the pseudo-label based semi-supervised learning in the DML framework is conducted,and the CIFAR-10 dataset for target classification is used to evaluate the performance.Experimental results confirm the convergence and the accuracy of the model using the pseudo-label based semi-supervised learning in the DML framework.Given the proportion of the pseudo-label dataset is 20%,the accuracy of the model is over 90% when the value of local parameter update steps between two global aggregations is less than 5.Besides,fixing the global aggregations interval to 3,the model converges with acceptable performance degradation when the proportion of the pseudo-label dataset varies from 20% to 80%.展开更多
Deep learning significantly improves the accuracy of remote sensing image scene classification,benefiting from the large-scale datasets.However,annotating the remote sensing images is time-consuming and even tough for...Deep learning significantly improves the accuracy of remote sensing image scene classification,benefiting from the large-scale datasets.However,annotating the remote sensing images is time-consuming and even tough for experts.Deep neural networks trained using a few labeled samples usually generalize less to new unseen images.In this paper,we propose a semi-supervised approach for remote sensing image scene classification based on the prototype-based consistency,by exploring massive unlabeled images.To this end,we,first,propose a feature enhancement module to extract discriminative features.This is achieved by focusing the model on the foreground areas.Then,the prototype-based classifier is introduced to the framework,which is used to acquire consistent feature representations.We conduct a series of experiments on NWPU-RESISC45 and Aerial Image Dataset(AID).Our method improves the State-Of-The-Art(SOTA)method on NWPU-RESISC45 from 92.03%to 93.08%and on AID from 94.25%to 95.24%in terms of accuracy.展开更多
With the rapid development of urban power grids and the large-scale integration of renewable energy, traditional power grid fault diagnosis techniques struggle to address the complexities of diagnosing faults in intri...With the rapid development of urban power grids and the large-scale integration of renewable energy, traditional power grid fault diagnosis techniques struggle to address the complexities of diagnosing faults in intricate power grid systems. Although artificial intelligence technologies offer new solutions for power grid fault diagnosis, the difficulty in acquiring labeled grid data limits the development of AI technologies in this area. In response to these challenges, this study proposes a semi-supervised learning framework with self-supervised and adaptive threshold (SAT-SSL) for fault detection and classification in power grids. Compared to other methods, our method reduces the dependence on labeling data while maintaining high recognition accuracy. First, we utilize frequency domain analysis on power grid data to filter abnormal events, then classify and label these events based on visual features, to creating a power grid dataset. Subsequently, we employ the Yule–Walker algorithm extract features from the power grid data. Then we construct a semi-supervised learning framework, incorporating self-supervised loss and dynamic threshold to enhance information extraction capabilities and adaptability across different scenarios of the model. Finally, the power grid dataset along with two benchmark datasets are used to validate the model’s functionality. The results indicate that our model achieves a low error rate across various scenarios and different amounts of labels. In power grid dataset, When retaining just 5% of the labels, the error rate is only 6.15%, which proves that this method can achieve accurate grid fault detection and classification with a limited amount of labeled data.展开更多
Deep neural networks(DNNs)have drawn great attention as they perform the state-of-the-art results on many tasks.Compared to DNNs,spiking neural networks(SNNs),which are considered as the new generation of neural netwo...Deep neural networks(DNNs)have drawn great attention as they perform the state-of-the-art results on many tasks.Compared to DNNs,spiking neural networks(SNNs),which are considered as the new generation of neural networks,fail to achieve comparable performance especially on tasks with large problem sizes.Many previous work tried to close the gap between DNNs and SNNs but used small networks on simple tasks.This work proposes a simple but effective way to construct deep spiking neural networks(DSNNs)by transferring the learned ability of DNNs to SNNs.DSNNs achieve comparable accuracy on large networks and complex datasets.展开更多
BACKGROUND Deep learning,a form of artificial intelligence,has shown promising results for interpreting radiographs.In order to develop this niche machine learning(ML)program of interpreting orthopedic radiographs wit...BACKGROUND Deep learning,a form of artificial intelligence,has shown promising results for interpreting radiographs.In order to develop this niche machine learning(ML)program of interpreting orthopedic radiographs with accuracy,a project named deep learning algorithm for orthopedic radiographs was conceived.In the first phase,the diagnosis of knee osteoarthritis(KOA)as per the standard Kellgren-Lawrence(KL)scale in medical images was conducted using the deep learning algorithm for orthopedic radiographs.AIM To compare efficacy and accuracy of eight different transfer learning deep learning models for detecting the grade of KOA from a radiograph and identify the most appropriate ML-based model for the detecting grade of KOA.METHODS The study was performed on 2068 radiograph exams conducted at the Department of Orthopedic Surgery,Sir HN Reliance Hospital and Research Centre(Mumbai,India)during 2019-2021.Three orthopedic surgeons reviewed these independently,graded them for the severity of KOA as per the KL scale and settled disagreement through a consensus session.Eight models,namely ResNet50,VGG-16,InceptionV3,MobilnetV2,EfficientnetB7,DenseNet201,Xception and NasNetMobile,were used to evaluate the efficacy of ML in accurately classifying radiographs for KOA as per the KL scale.Out of the 2068 images,70%were used initially to train the model,10%were used subsequently to test the model,and 20%were used finally to determine the accuracy of and validate each model.The idea behind transfer learning for KOA grade image classification is that if the existing models are already trained on a large and general dataset,these models will effectively serve as generic models to fulfill the study’s objectives.Finally,in order to benchmark the efficacy,the results of the models were also compared to a first-year orthopedic trainee who independently classified these models according to the KL scale.RESULTS Our network yielded an overall high accuracy for detecting KOA,ranging from 54%to 93%.The most successful of these was the DenseNet model,with accuracy up to 93%;interestingly,it even outperformed the human first-year trainee who had an accuracy of 74%.CONCLUSION The study paves the way for extrapolating the learning using ML to develop an automated KOA classification tool and enable healthcare professionals with better decision-making.展开更多
汽车自动变道需要在保证不发生碰撞的情况下,以尽可能快的速度行驶,规则性地控制不仅对意外情况不具有鲁棒性,而且不能对间隔车道的情况做出反应.针对这些问题,提出了一种基于双决斗深度Q网络(dueling double deep Q-network,D3QN)强化...汽车自动变道需要在保证不发生碰撞的情况下,以尽可能快的速度行驶,规则性地控制不仅对意外情况不具有鲁棒性,而且不能对间隔车道的情况做出反应.针对这些问题,提出了一种基于双决斗深度Q网络(dueling double deep Q-network,D3QN)强化学习模型的自动换道决策模型,该算法对车联网反馈的环境车信息处理之后,通过策略得到动作,执行动作后根据奖励函数对神经网络进行训练,最后通过训练的网络以及强化学习来实现自动换道策略.利用Python搭建的三车道环境以及车辆仿真软件CarMaker进行仿真实验,得到了很好的控制效果,结果验证了本文算法的可行性和有效性.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 62171203in part by the Jiangsu Province“333 Project”High-Level Talent Cultivation Subsidized Project+2 种基金in part by the SuzhouKey Supporting Subjects for Health Informatics under Grant SZFCXK202147in part by the Changshu Science and Technology Program under Grants CS202015 and CS202246in part by Changshu Key Laboratory of Medical Artificial Intelligence and Big Data under Grants CYZ202301 and CS202314.
文摘In this paper,we introduce a novel Multi-scale and Auto-tuned Semi-supervised Deep Subspace Clustering(MAS-DSC)algorithm,aimed at addressing the challenges of deep subspace clustering in high-dimensional real-world data,particularly in the field of medical imaging.Traditional deep subspace clustering algorithms,which are mostly unsupervised,are limited in their ability to effectively utilize the inherent prior knowledge in medical images.Our MAS-DSC algorithm incorporates a semi-supervised learning framework that uses a small amount of labeled data to guide the clustering process,thereby enhancing the discriminative power of the feature representations.Additionally,the multi-scale feature extraction mechanism is designed to adapt to the complexity of medical imaging data,resulting in more accurate clustering performance.To address the difficulty of hyperparameter selection in deep subspace clustering,this paper employs a Bayesian optimization algorithm for adaptive tuning of hyperparameters related to subspace clustering,prior knowledge constraints,and model loss weights.Extensive experiments on standard clustering datasets,including ORL,Coil20,and Coil100,validate the effectiveness of the MAS-DSC algorithm.The results show that with its multi-scale network structure and Bayesian hyperparameter optimization,MAS-DSC achieves excellent clustering results on these datasets.Furthermore,tests on a brain tumor dataset demonstrate the robustness of the algorithm and its ability to leverage prior knowledge for efficient feature extraction and enhanced clustering performance within a semi-supervised learning framework.
基金supported in part by the National Natural Science Foundation of China under Grant No.62171334,No.11973077 and No.12003061。
文摘With the successive application of deep learning(DL)in classification tasks,the DL-based modulation classification method has become the preference for its state-of-the-art performance.Nevertheless,once the DL recognition model is pre-trained with fixed classes,the pre-trained model tends to predict incorrect results when identifying incremental classes.Moreover,the incremental classes are usually emergent without label information or only a few labeled samples of incremental classes can be obtained.In this context,we propose a graphbased semi-supervised approach to address the fewshot classes-incremental(FSCI)modulation classification problem.Our proposed method is a twostage learning method,specifically,a warm-up model is trained for classifying old classes and incremental classes,where the unlabeled samples of incremental classes are uniformly labeled with the same label to alleviate the damage of the class imbalance problem.Then the warm-up model is regarded as a feature extractor for constructing a similar graph to connect labeled samples and unlabeled samples,and the label propagation algorithm is adopted to propagate the label information from labeled nodes to unlabeled nodes in the graph to achieve the purpose of incremental classes recognition.Simulation results prove that the proposed method is superior to other finetuning methods and retrain methods.
基金partially funded by the National Natural Science Foundation of China (Grant No. 61272447)National Entrepreneurship & Innovation Demonstration Base of China (Grant No. C700011)Key Research & Development Project of Sichuan Province of China (Grant No. 2018G20100)
文摘The limited labeled sample data in the field of advanced security threats detection seriously restricts the effective development of research work.Learning the sample labels from the labeled and unlabeled data has received a lot of research attention and various universal labeling methods have been proposed.However,the labeling task of malicious communication samples targeted at advanced threats has to face the two practical challenges:the difficulty of extracting effective features in advance and the complexity of the actual sample types.To address these problems,we proposed a sample labeling method for malicious communication based on semi-supervised deep neural network.This method supports continuous learning and optimization feature representation while labeling sample,and can handle uncertain samples that are outside the concerned sample types.According to the experimental results,our proposed deep neural network can automatically learn effective feature representation,and the validity of features is close to or even higher than that of features which extracted based on expert knowledge.Furthermore,our proposed method can achieve the labeling accuracy of 97.64%~98.50%,which is more accurate than the train-then-detect,kNN and LPA methodsin any labeled-sample proportion condition.The problem of insufficient labeled samples in many network attack detecting scenarios,and our proposed work can function as a reference for the sample labeling tasks in the similar real-world scenarios.
基金The completion of this research was made possible thanks to The Natural Sciences and Engineering Research Council of Canada(NSERC)and a start-up grant from Concordia University.
文摘Non-intrusive load monitoring(NILM)is a technique which extracts individual appliance consumption and operation state change information from the aggregate power consumption made by a single residential or commercial unit.NILM plays a pivotal role in modernizing building energy management by disaggregating total energy consumption into individual appliance-level insights.This enables informed decision-making,energy optimization,and cost reduction.However,NILM encounters substantial challenges like signal noise,data availability,and data privacy concerns,necessitating advanced algorithms and robust methodologies to ensure accurate and secure energy disaggregation in real-world scenarios.Deep learning techniques have recently shown some promising results in NILM research,but training these neural networks requires significant labeled data.Obtaining initial sets of labeled data for the research by installing smart meters at the end of consumers’appliances is laborious and expensive and exposes users to severe privacy risks.It is also important to mention that most NILM research uses empirical observations instead of proper mathematical approaches to obtain the threshold value for determining appliance operation states(On/Off)from their respective energy consumption value.This paper proposes a novel semi-supervised multilabel deep learning technique based on temporal convolutional network(TCN)and long short-term memory(LSTM)for classifying appliance operation states from labeled and unlabeled data.The two thresholding techniques,namely Middle-Point Thresholding and Variance-Sensitive Thresholding,which are needed to derive the threshold values for determining appliance operation states,are also compared thoroughly.The superiority of the proposed model,along with finding the appliance states through the Middle-Point Thresholding method,is demonstrated through 15%improved overall improved F1micro score and almost 26%improved Hamming loss,F1 and Specificity score for the performance of individual appliance when compared to the benchmarking techniques that also used semi-supervised learning approach.
基金This work is supported by the National Natural Science Foundation of China(Nos.61771154,61603239,61772454,6171101570).
文摘Deep Learning(DL)is such a powerful tool that we have seen tremendous success in areas such as Computer Vision,Speech Recognition,and Natural Language Processing.Since Automated Modulation Classification(AMC)is an important part in Cognitive Radio Networks,we try to explore its potential in solving signal modulation recognition problem.It cannot be overlooked that DL model is a complex model,thus making them prone to over-fitting.DL model requires many training data to combat with over-fitting,but adding high quality labels to training data manually is not always cheap and accessible,especially in real-time system,which may counter unprecedented data in dataset.Semi-supervised Learning is a way to exploit unlabeled data effectively to reduce over-fitting in DL.In this paper,we extend Generative Adversarial Networks(GANs)to the semi-supervised learning will show it is a method can be used to create a more dataefficient classifier.
基金Supported by the National Key R&D Program of China(No.2020YFC1807904)the Natural Science Foundation of Beijing Municipality(No.L192002)the National Natural Science Foundation of China(No.U1633115)。
文摘With the emergence of various intelligent applications,machine learning technologies face lots of challenges including large-scale models,application oriented real-time dataset and limited capabilities of nodes in practice.Therefore,distributed machine learning(DML) and semi-supervised learning methods which help solve these problems have been addressed in both academia and industry.In this paper,the semi-supervised learning method and the data parallelism DML framework are combined.The pseudo-label based local loss function for each distributed node is studied,and the stochastic gradient descent(SGD) based distributed parameter update principle is derived.A demo that implements the pseudo-label based semi-supervised learning in the DML framework is conducted,and the CIFAR-10 dataset for target classification is used to evaluate the performance.Experimental results confirm the convergence and the accuracy of the model using the pseudo-label based semi-supervised learning in the DML framework.Given the proportion of the pseudo-label dataset is 20%,the accuracy of the model is over 90% when the value of local parameter update steps between two global aggregations is less than 5.Besides,fixing the global aggregations interval to 3,the model converges with acceptable performance degradation when the proportion of the pseudo-label dataset varies from 20% to 80%.
基金supported in part by the National Natural Science Foundation of China(No.12302252)。
文摘Deep learning significantly improves the accuracy of remote sensing image scene classification,benefiting from the large-scale datasets.However,annotating the remote sensing images is time-consuming and even tough for experts.Deep neural networks trained using a few labeled samples usually generalize less to new unseen images.In this paper,we propose a semi-supervised approach for remote sensing image scene classification based on the prototype-based consistency,by exploring massive unlabeled images.To this end,we,first,propose a feature enhancement module to extract discriminative features.This is achieved by focusing the model on the foreground areas.Then,the prototype-based classifier is introduced to the framework,which is used to acquire consistent feature representations.We conduct a series of experiments on NWPU-RESISC45 and Aerial Image Dataset(AID).Our method improves the State-Of-The-Art(SOTA)method on NWPU-RESISC45 from 92.03%to 93.08%and on AID from 94.25%to 95.24%in terms of accuracy.
基金supported by the National Natural Science Foundation China under Grants number 62073232,and the Science and Technology Project of Shenzhen,China(KCXST20221021111402006,JSGG20220831105800002)and the“Nanling Team Project”of Shaoguan city,and the Science and Technology project of Tianjin,China(22YFYSHZ00330)+1 种基金and Shenzhen Excellent Innovative Talents RCYX20221008093036022,Shenzhen-HongKong joint funding project(A)(SGDX20230116092053005)the Shenzhen Undertaking the National Major Science and Technology Program,China(CJGJZD20220517141405012).
文摘With the rapid development of urban power grids and the large-scale integration of renewable energy, traditional power grid fault diagnosis techniques struggle to address the complexities of diagnosing faults in intricate power grid systems. Although artificial intelligence technologies offer new solutions for power grid fault diagnosis, the difficulty in acquiring labeled grid data limits the development of AI technologies in this area. In response to these challenges, this study proposes a semi-supervised learning framework with self-supervised and adaptive threshold (SAT-SSL) for fault detection and classification in power grids. Compared to other methods, our method reduces the dependence on labeling data while maintaining high recognition accuracy. First, we utilize frequency domain analysis on power grid data to filter abnormal events, then classify and label these events based on visual features, to creating a power grid dataset. Subsequently, we employ the Yule–Walker algorithm extract features from the power grid data. Then we construct a semi-supervised learning framework, incorporating self-supervised loss and dynamic threshold to enhance information extraction capabilities and adaptability across different scenarios of the model. Finally, the power grid dataset along with two benchmark datasets are used to validate the model’s functionality. The results indicate that our model achieves a low error rate across various scenarios and different amounts of labels. In power grid dataset, When retaining just 5% of the labels, the error rate is only 6.15%, which proves that this method can achieve accurate grid fault detection and classification with a limited amount of labeled data.
基金the National Natural Science Foundation of China(No.61732007)Strategic Priority Research Program of Chinese Academy of Sciences(XDB32050200,XDC01020000).
文摘Deep neural networks(DNNs)have drawn great attention as they perform the state-of-the-art results on many tasks.Compared to DNNs,spiking neural networks(SNNs),which are considered as the new generation of neural networks,fail to achieve comparable performance especially on tasks with large problem sizes.Many previous work tried to close the gap between DNNs and SNNs but used small networks on simple tasks.This work proposes a simple but effective way to construct deep spiking neural networks(DSNNs)by transferring the learned ability of DNNs to SNNs.DSNNs achieve comparable accuracy on large networks and complex datasets.
文摘BACKGROUND Deep learning,a form of artificial intelligence,has shown promising results for interpreting radiographs.In order to develop this niche machine learning(ML)program of interpreting orthopedic radiographs with accuracy,a project named deep learning algorithm for orthopedic radiographs was conceived.In the first phase,the diagnosis of knee osteoarthritis(KOA)as per the standard Kellgren-Lawrence(KL)scale in medical images was conducted using the deep learning algorithm for orthopedic radiographs.AIM To compare efficacy and accuracy of eight different transfer learning deep learning models for detecting the grade of KOA from a radiograph and identify the most appropriate ML-based model for the detecting grade of KOA.METHODS The study was performed on 2068 radiograph exams conducted at the Department of Orthopedic Surgery,Sir HN Reliance Hospital and Research Centre(Mumbai,India)during 2019-2021.Three orthopedic surgeons reviewed these independently,graded them for the severity of KOA as per the KL scale and settled disagreement through a consensus session.Eight models,namely ResNet50,VGG-16,InceptionV3,MobilnetV2,EfficientnetB7,DenseNet201,Xception and NasNetMobile,were used to evaluate the efficacy of ML in accurately classifying radiographs for KOA as per the KL scale.Out of the 2068 images,70%were used initially to train the model,10%were used subsequently to test the model,and 20%were used finally to determine the accuracy of and validate each model.The idea behind transfer learning for KOA grade image classification is that if the existing models are already trained on a large and general dataset,these models will effectively serve as generic models to fulfill the study’s objectives.Finally,in order to benchmark the efficacy,the results of the models were also compared to a first-year orthopedic trainee who independently classified these models according to the KL scale.RESULTS Our network yielded an overall high accuracy for detecting KOA,ranging from 54%to 93%.The most successful of these was the DenseNet model,with accuracy up to 93%;interestingly,it even outperformed the human first-year trainee who had an accuracy of 74%.CONCLUSION The study paves the way for extrapolating the learning using ML to develop an automated KOA classification tool and enable healthcare professionals with better decision-making.
文摘汽车自动变道需要在保证不发生碰撞的情况下,以尽可能快的速度行驶,规则性地控制不仅对意外情况不具有鲁棒性,而且不能对间隔车道的情况做出反应.针对这些问题,提出了一种基于双决斗深度Q网络(dueling double deep Q-network,D3QN)强化学习模型的自动换道决策模型,该算法对车联网反馈的环境车信息处理之后,通过策略得到动作,执行动作后根据奖励函数对神经网络进行训练,最后通过训练的网络以及强化学习来实现自动换道策略.利用Python搭建的三车道环境以及车辆仿真软件CarMaker进行仿真实验,得到了很好的控制效果,结果验证了本文算法的可行性和有效性.