How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle co...How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle component analysis(PCA) is the most widely-used linear dimensionality reduction method at present.However,the relationships between seismic attributes and reservoir features are non-linear,so seismic attribute dimensionality reduction based on linear transforms can't solve non-linear problems well,reducing reservoir prediction precision.As a new non-linear learning method,manifold learning supplies a new method for seismic attribute analysis.It can discover the intrinsic features and rules hidden in the data by computing low-dimensional,neighborhood-preserving embeddings of high-dimensional inputs.In this paper,we try to extract seismic attributes using locally linear embedding(LLE),realizing inter-horizon attributes dimensionality reduction of 3D seismic data first and discuss the optimization of its key parameters.Combining model analysis and case studies,we compare the dimensionality reduction and clustering effects of LLE and PCA,both of which indicate that LLE can retain the intrinsic structure of the inputs.The composite attributes and clustering results based on LLE better characterize the distribution of sedimentary facies,reservoir,and even reservoir fluids.展开更多
A fault detection method based on incremental locally linear embedding(LLE)is presented to improve fault detecting accuracy for satellites with telemetry data.Since conventional LLE algorithm cannot handle incremental...A fault detection method based on incremental locally linear embedding(LLE)is presented to improve fault detecting accuracy for satellites with telemetry data.Since conventional LLE algorithm cannot handle incremental learning,an incremental LLE method is proposed to acquire low-dimensional feature embedded in high-dimensional space.Then,telemetry data of Satellite TX-I are analyzed.Therefore,fault detection are performed by analyzing feature information extracted from the telemetry data with the statistical indexes T2 and squared prediction error(SPE)and SPE.Simulation results verify the fault detection scheme.展开更多
函数型聚类分析在统计学领域被广泛关注,其分析过程通常在降维目标实现后进行。为了有效解决函数型主成分聚类问题,文章结合局部线性嵌入算法(Locally Linear Embedding,LLE)在非线性空间下的适用性,提出了一种局部线性下的函数型主成...函数型聚类分析在统计学领域被广泛关注,其分析过程通常在降维目标实现后进行。为了有效解决函数型主成分聚类问题,文章结合局部线性嵌入算法(Locally Linear Embedding,LLE)在非线性空间下的适用性,提出了一种局部线性下的函数型主成分分析模型(LLE Function Principle Component Analysis,LFPCA)。首先,采用函数型主成分分析法作为降维目标方法,改进了FPCA的算法模型,通过将LLE算法的权重系数矩阵与函数型主成分定义相结合,构建出一个适用于非线性空间下的聚类算法;其次,在求解算法的过程中定义了函数型主成分得分,并结合EM算法构建出GMM模型来近似函数型算法的概率密度函数,使模型更高效且适用性更强;最后,通过随机模拟实验及应用分析验证了LFPCA算法模型在真实数据集上具有良好的聚类效能。展开更多
针对传统局部线性嵌入算法在挖掘局部流形结构时未充分考虑样本邻居分布信息,且在降维过程中默认样本具有相同的重要性导致提取鉴别特征不明显的问题,提出基于共享近邻的加权局部线性嵌入(weighted local linear embedding based on sha...针对传统局部线性嵌入算法在挖掘局部流形结构时未充分考虑样本邻居分布信息,且在降维过程中默认样本具有相同的重要性导致提取鉴别特征不明显的问题,提出基于共享近邻的加权局部线性嵌入(weighted local linear embedding based on shared neighbors,SN-WLLE)算法,并用于滚动轴承故障诊断.该算法首先使用余弦距离划分样本邻域;其次计算样本邻域对相似度用以评估样本共享近邻信息,并结合样本的6种邻居分布修正局部结构挖掘,提高多共享近邻的k近邻重构准确性;接着从多流形的角度评估样本点与近邻点间的稀疏分布一致性,以获得样本的重要性指标,并在低维空间保持该信息,进而提取准确的鉴别特征;最后结合KNN分类器构建出完备的轴承故障诊断模型.采用凯斯西储大学轴承数据集和实验室测试平台轴承数据集,从可视化评估、定量聚类评估、故障识别精度评估及鲁棒性评估等方面进行分析.结果表明:SN-WLLE算法的F值保持在108以上水准,平均故障识别精度最低可达0.9734,不仅具有较好的类内紧致性与类间可分性,还对近邻参数k具有低敏感性.展开更多
In this paper, a new nonlinear fault detection technique based on locally linear embedding (LLE) is developed. LLE can efficiently compute the low-dimensional embedding of the data with the local neighborhood struct...In this paper, a new nonlinear fault detection technique based on locally linear embedding (LLE) is developed. LLE can efficiently compute the low-dimensional embedding of the data with the local neighborhood structure information preserved. In this method, a data-dependent kernel matrix which can reflect the nonlinear data structure is defined. Based on the kernel matrix, the Nystrrm formula makes the mapping extended to the testing data possible. With the kernel view of the LLE, two monitoring statistics are constructed. Together with the out of sample extensions, LLE is used for nonlinear fault detection. Simulation cases were studied to demonstrate the performance of the proposed method.展开更多
Locally linear embedding(LLE)algorithm has a distinct deficiency in practical application.It requires users to select the neighborhood parameter,k,which denotes the number of nearest neighbors.A new adaptive method is...Locally linear embedding(LLE)algorithm has a distinct deficiency in practical application.It requires users to select the neighborhood parameter,k,which denotes the number of nearest neighbors.A new adaptive method is presented based on supervised LLE in this article.A similarity measure is formed by utilizing the Fisher projection distance,and then it is used as a threshold to select k.Different samples will produce different k adaptively according to the density of the data distribution.The method is applied to classify plant leaves.The experimental results show that the average classification rate of this new method is up to 92.4%,which is much better than the results from the traditional LLE and supervised LLE.展开更多
近年来,随着人工智能领域技术的不断发展,人机交互领域吸引了更多学者的关注。研究表明由脑电图(electroencephalogram,EEG)提取的特征功率谱密度对于脑力负荷的变化比较敏感,但由于其维数过高,容易造成数据灾难。局部线性嵌入(locally ...近年来,随着人工智能领域技术的不断发展,人机交互领域吸引了更多学者的关注。研究表明由脑电图(electroencephalogram,EEG)提取的特征功率谱密度对于脑力负荷的变化比较敏感,但由于其维数过高,容易造成数据灾难。局部线性嵌入(locally linear embedding,LLE)是常用的非线性降维算法,该算法弥补了传统线性降维算法无法发现数据中非线性结构关系的不足。由于不同数据集中样本分布的稀疏程度和扭曲程度不同,在使用LLE对不同数据集进行降维时的最佳邻域参数也不同。利用样本点之间的欧氏距离和测地距离的关系量化了数据集的扭曲程度,自适应邻域参数的局部线性嵌入算法(variable k-locally linear embedding,VK-LLE)动态地调整每一个数据集的最佳邻域参数,解决了样本分布扭曲程度不同对降维效果造成的干扰。实验结果表明,经过VK-LLE降维后的数据使用支持向量机(support vector machine,SVM)分类精度普遍高于经过传统LLE的降维后再使用SVM分类的精度,对复杂数据集有更强的适应能力。展开更多
针对光伏出力和电动汽车充电特性的随机特性对电力系统的冲击不断增强,准确及时的源荷预测是实现增强电力系统适应性和稳定性的重要课题。因此,提出一种基于共享权重长短期记忆网络(shared weight long short-term networks,SWLSTM)与St...针对光伏出力和电动汽车充电特性的随机特性对电力系统的冲击不断增强,准确及时的源荷预测是实现增强电力系统适应性和稳定性的重要课题。因此,提出一种基于共享权重长短期记忆网络(shared weight long short-term networks,SWLSTM)与Stacking集成模型相结合的源荷区间预测方法。首先,光伏出力存在时序性特征,采用局部线性嵌入改进k-means算法聚类提取特征日,在实现数据降维同时,减少了网络训练难度;其次,在Stacking集成模型的框架下,将SWLSTM作为元学习器,并通过Q统计量筛选合适的基学习器模型,从而实现多模型融合的多异学习器Stacking集成学习的源荷预测;紧接着,为了得到预测的不确定信息,引入置信度区间预测;最后,采用实测数据对本文所提方法进行验证。结果表明改进k-means算法能够降低其求解难度,加快求解速度,可以快速获取聚类特征;所引入集成学习模型和置信度区间,有效表征源荷预测的不确定性,提升区间预测模型的泛化能力。展开更多
In order to achieve failure prediction without manual intervention for distributed systems, a novel failure feature analysis and extraction approach to automate failure prediction is proposed. Compared with the tradit...In order to achieve failure prediction without manual intervention for distributed systems, a novel failure feature analysis and extraction approach to automate failure prediction is proposed. Compared with the traditional methods which focus on building heuristic rules or models, the autonomic prediction approach analyzes the nonlinear correlation of failure features by recognizing failure patterns. Failure data are sorted according to the nonlinear correlation and failure signature is proposed for autonomic prediction. In addition, the Manifold Learning algorithm named supervised locally linear embedding is applied to achieve feature extraction. Based on the runtime monitoring of failure metrics, the experimental results indicate that the proposed method has better performance in terms of both correlation recognition precision and feature extraction quality and thus it can be used to design efficient autonomic failure prediction for distributed systems.展开更多
基金National Key Science & Technology Special Projects(Grant No.2008ZX05000-004)CNPC Projects(Grant No.2008E-0610-10).
文摘How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle component analysis(PCA) is the most widely-used linear dimensionality reduction method at present.However,the relationships between seismic attributes and reservoir features are non-linear,so seismic attribute dimensionality reduction based on linear transforms can't solve non-linear problems well,reducing reservoir prediction precision.As a new non-linear learning method,manifold learning supplies a new method for seismic attribute analysis.It can discover the intrinsic features and rules hidden in the data by computing low-dimensional,neighborhood-preserving embeddings of high-dimensional inputs.In this paper,we try to extract seismic attributes using locally linear embedding(LLE),realizing inter-horizon attributes dimensionality reduction of 3D seismic data first and discuss the optimization of its key parameters.Combining model analysis and case studies,we compare the dimensionality reduction and clustering effects of LLE and PCA,both of which indicate that LLE can retain the intrinsic structure of the inputs.The composite attributes and clustering results based on LLE better characterize the distribution of sedimentary facies,reservoir,and even reservoir fluids.
基金supported by the Fundamental Research Funds for the Central Universities(No.2016083)
文摘A fault detection method based on incremental locally linear embedding(LLE)is presented to improve fault detecting accuracy for satellites with telemetry data.Since conventional LLE algorithm cannot handle incremental learning,an incremental LLE method is proposed to acquire low-dimensional feature embedded in high-dimensional space.Then,telemetry data of Satellite TX-I are analyzed.Therefore,fault detection are performed by analyzing feature information extracted from the telemetry data with the statistical indexes T2 and squared prediction error(SPE)and SPE.Simulation results verify the fault detection scheme.
文摘函数型聚类分析在统计学领域被广泛关注,其分析过程通常在降维目标实现后进行。为了有效解决函数型主成分聚类问题,文章结合局部线性嵌入算法(Locally Linear Embedding,LLE)在非线性空间下的适用性,提出了一种局部线性下的函数型主成分分析模型(LLE Function Principle Component Analysis,LFPCA)。首先,采用函数型主成分分析法作为降维目标方法,改进了FPCA的算法模型,通过将LLE算法的权重系数矩阵与函数型主成分定义相结合,构建出一个适用于非线性空间下的聚类算法;其次,在求解算法的过程中定义了函数型主成分得分,并结合EM算法构建出GMM模型来近似函数型算法的概率密度函数,使模型更高效且适用性更强;最后,通过随机模拟实验及应用分析验证了LFPCA算法模型在真实数据集上具有良好的聚类效能。
文摘针对传统局部线性嵌入算法在挖掘局部流形结构时未充分考虑样本邻居分布信息,且在降维过程中默认样本具有相同的重要性导致提取鉴别特征不明显的问题,提出基于共享近邻的加权局部线性嵌入(weighted local linear embedding based on shared neighbors,SN-WLLE)算法,并用于滚动轴承故障诊断.该算法首先使用余弦距离划分样本邻域;其次计算样本邻域对相似度用以评估样本共享近邻信息,并结合样本的6种邻居分布修正局部结构挖掘,提高多共享近邻的k近邻重构准确性;接着从多流形的角度评估样本点与近邻点间的稀疏分布一致性,以获得样本的重要性指标,并在低维空间保持该信息,进而提取准确的鉴别特征;最后结合KNN分类器构建出完备的轴承故障诊断模型.采用凯斯西储大学轴承数据集和实验室测试平台轴承数据集,从可视化评估、定量聚类评估、故障识别精度评估及鲁棒性评估等方面进行分析.结果表明:SN-WLLE算法的F值保持在108以上水准,平均故障识别精度最低可达0.9734,不仅具有较好的类内紧致性与类间可分性,还对近邻参数k具有低敏感性.
基金supported in part by the National Basic Research Program of China(973 Program)(No.2012CB720505)the National Natural Science Foundation of China(No.61273167)
文摘In this paper, a new nonlinear fault detection technique based on locally linear embedding (LLE) is developed. LLE can efficiently compute the low-dimensional embedding of the data with the local neighborhood structure information preserved. In this method, a data-dependent kernel matrix which can reflect the nonlinear data structure is defined. Based on the kernel matrix, the Nystrrm formula makes the mapping extended to the testing data possible. With the kernel view of the LLE, two monitoring statistics are constructed. Together with the out of sample extensions, LLE is used for nonlinear fault detection. Simulation cases were studied to demonstrate the performance of the proposed method.
基金This study was financially supported by the National Natural Science Foundation of China(61172127)the Research Fund for the Doctoral Program of Higher Education(KJQN1114)+2 种基金Anhui Provincial Natural Science Foundation(1308085QC58)the 211 Project Youth Scientific Research Fund of Anhui UniversityProvincial Natural Science Foundation of Anhui Universities(KJ2013A026)。
文摘Locally linear embedding(LLE)algorithm has a distinct deficiency in practical application.It requires users to select the neighborhood parameter,k,which denotes the number of nearest neighbors.A new adaptive method is presented based on supervised LLE in this article.A similarity measure is formed by utilizing the Fisher projection distance,and then it is used as a threshold to select k.Different samples will produce different k adaptively according to the density of the data distribution.The method is applied to classify plant leaves.The experimental results show that the average classification rate of this new method is up to 92.4%,which is much better than the results from the traditional LLE and supervised LLE.
文摘近年来,随着人工智能领域技术的不断发展,人机交互领域吸引了更多学者的关注。研究表明由脑电图(electroencephalogram,EEG)提取的特征功率谱密度对于脑力负荷的变化比较敏感,但由于其维数过高,容易造成数据灾难。局部线性嵌入(locally linear embedding,LLE)是常用的非线性降维算法,该算法弥补了传统线性降维算法无法发现数据中非线性结构关系的不足。由于不同数据集中样本分布的稀疏程度和扭曲程度不同,在使用LLE对不同数据集进行降维时的最佳邻域参数也不同。利用样本点之间的欧氏距离和测地距离的关系量化了数据集的扭曲程度,自适应邻域参数的局部线性嵌入算法(variable k-locally linear embedding,VK-LLE)动态地调整每一个数据集的最佳邻域参数,解决了样本分布扭曲程度不同对降维效果造成的干扰。实验结果表明,经过VK-LLE降维后的数据使用支持向量机(support vector machine,SVM)分类精度普遍高于经过传统LLE的降维后再使用SVM分类的精度,对复杂数据集有更强的适应能力。
文摘针对光伏出力和电动汽车充电特性的随机特性对电力系统的冲击不断增强,准确及时的源荷预测是实现增强电力系统适应性和稳定性的重要课题。因此,提出一种基于共享权重长短期记忆网络(shared weight long short-term networks,SWLSTM)与Stacking集成模型相结合的源荷区间预测方法。首先,光伏出力存在时序性特征,采用局部线性嵌入改进k-means算法聚类提取特征日,在实现数据降维同时,减少了网络训练难度;其次,在Stacking集成模型的框架下,将SWLSTM作为元学习器,并通过Q统计量筛选合适的基学习器模型,从而实现多模型融合的多异学习器Stacking集成学习的源荷预测;紧接着,为了得到预测的不确定信息,引入置信度区间预测;最后,采用实测数据对本文所提方法进行验证。结果表明改进k-means算法能够降低其求解难度,加快求解速度,可以快速获取聚类特征;所引入集成学习模型和置信度区间,有效表征源荷预测的不确定性,提升区间预测模型的泛化能力。
基金Supported by National Natural Science Foundation of China(61071131,61271388) Natural Science Foundation of Beijing(4122040)+1 种基金 Research Project of Tsinghua University(2012Z01011) Doctoral Fund of Ministry of Education of China(20120002110036)
基金Supported by the National High Technology Research and Development Programme of China ( No. 2007AA01Z401 ) and the National Natural Science Foundation of China (No. 90718003, 60973027).
文摘In order to achieve failure prediction without manual intervention for distributed systems, a novel failure feature analysis and extraction approach to automate failure prediction is proposed. Compared with the traditional methods which focus on building heuristic rules or models, the autonomic prediction approach analyzes the nonlinear correlation of failure features by recognizing failure patterns. Failure data are sorted according to the nonlinear correlation and failure signature is proposed for autonomic prediction. In addition, the Manifold Learning algorithm named supervised locally linear embedding is applied to achieve feature extraction. Based on the runtime monitoring of failure metrics, the experimental results indicate that the proposed method has better performance in terms of both correlation recognition precision and feature extraction quality and thus it can be used to design efficient autonomic failure prediction for distributed systems.