期刊文献+
共找到999篇文章
< 1 2 50 >
每页显示 20 50 100
Smart Approaches to Efficient Text Mining for Categorizing Sexual Reproductive Health Short Messages into Key Themes
1
作者 Tobias Makai Mayumbo Nyirenda 《Open Journal of Applied Sciences》 2024年第2期511-532,共22页
To promote behavioral change among adolescents in Zambia, the National HIV/AIDS/STI/TB Council, in collaboration with UNICEF, developed the Zambia U-Report platform. This platform provides young people with improved a... To promote behavioral change among adolescents in Zambia, the National HIV/AIDS/STI/TB Council, in collaboration with UNICEF, developed the Zambia U-Report platform. This platform provides young people with improved access to information on various Sexual Reproductive Health topics through Short Messaging Service (SMS) messages. Over the years, the platform has accumulated millions of incoming and outgoing messages, which need to be categorized into key thematic areas for better tracking of sexual reproductive health knowledge gaps among young people. The current manual categorization process of these text messages is inefficient and time-consuming and this study aims to automate the process for improved analysis using text-mining techniques. Firstly, the study investigates the current text message categorization process and identifies a list of categories adopted by counselors over time which are then used to build and train a categorization model. Secondly, the study presents a proof of concept tool that automates the categorization of U-report messages into key thematic areas using the developed categorization model. Finally, it compares the performance and effectiveness of the developed proof of concept tool against the manual system. The study used a dataset comprising 206,625 text messages. The current process would take roughly 2.82 years to categorise this dataset whereas the trained SVM model would require only 6.4 minutes while achieving an accuracy of 70.4% demonstrating that the automated method is significantly faster, more scalable, and consistent when compared to the current manual categorization. These advantages make the SVM model a more efficient and effective tool for categorizing large unstructured text datasets. These results and the proof-of-concept tool developed demonstrate the potential for enhancing the efficiency and accuracy of message categorization on the Zambia U-report platform and other similar text messages-based platforms. 展开更多
关键词 Knowledge Discovery in text (KDT) Sexual Reproductive Health (SRH) text categorization text Classification text Extraction text Mining Feature Extraction Automated Classification Process Performance Stemming and Lemmatization Natural Language Processing (NLP)
下载PDF
Text categorization based on fuzzy classification rules tree 被引量:2
2
作者 郭玉琴 袁方 刘海博 《Journal of Southeast University(English Edition)》 EI CAS 2008年第3期339-342,共4页
To deal with the problem that arises when the conventional fuzzy class-association method applies repetitive scans of the classifier to classify new texts,which has low efficiency, a new approach based on the FCR-tree... To deal with the problem that arises when the conventional fuzzy class-association method applies repetitive scans of the classifier to classify new texts,which has low efficiency, a new approach based on the FCR-tree(fuzzy classification rules tree)for text categorization is proposed.The compactness of the FCR-tree saves significant space in storing a large set of rules when there are many repeated words in the rules.In comparison with classification rules,the fuzzy classification rules contain not only words,but also the fuzzy sets corresponding to the frequencies of words appearing in texts.Therefore,the construction of an FCR-tree and its structure are different from a CR-tree.To debase the difficulty of FCR-tree construction and rules retrieval,more k-FCR-trees are built.When classifying a new text,it is not necessary to search the paths of the sub-trees led by those words not appearing in this text,thus reducing the number of traveling rules.Experimental results show that the proposed approach obviously outperforms the conventional method in efficiency. 展开更多
关键词 text categorization fuzzy classification association rule classification rules tree fuzzy classification rules tree
下载PDF
A New Approach of Feature Selection for Text Categorization 被引量:6
3
作者 CUI Zifeng XU Baowen +1 位作者 ZHANG Weifeng XU Junling 《Wuhan University Journal of Natural Sciences》 CAS 2006年第5期1335-1339,共5页
This paper proposes a new approach of feature selection based on the independent measure between features for text categorization. A fundamental hypothesis that occurrence of the terms in documents is independent of e... This paper proposes a new approach of feature selection based on the independent measure between features for text categorization. A fundamental hypothesis that occurrence of the terms in documents is independent of each other, widely used in the probabilistic models for text categorization (TC), is discussed. However, the basic hypothesis is incom plete for independence of feature set. From the view of feature selection, a new independent measure between features is designed, by which a feature selection algorithm is given to ob rain a feature subset. The selected subset is high in relevance with category and strong in independence between features, satisfies the basic hypothesis at maximum degree. Compared with other traditional feature selection method in TC (which is only taken into the relevance account), the performance of feature subset selected by our method is prior to others with experiments on the benchmark dataset of 20 Newsgroups. 展开更多
关键词 feature selection independency CHI square test text categorization
下载PDF
Comparison of Text Categorization Algorithms 被引量:4
4
作者 SHIYong-feng ZHAOYan-ping 《Wuhan University Journal of Natural Sciences》 EI CAS 2004年第5期798-804,共7页
This paper summarizes several automatic text categorization algorithms in common use recently, analyzes and compares their advantages and disadvantages. It provides clues for making use of appropriate automatic classi... This paper summarizes several automatic text categorization algorithms in common use recently, analyzes and compares their advantages and disadvantages. It provides clues for making use of appropriate automatic classifying algorithms in different fields. Finally some evaluations and summaries of these algorithms are discussed, and directions to further research have been pointed out. Key words text categorization - naive bayes - KNN - SVM - neural network CLC number TP 391 Foundation item: Supported by the National Natural Science Foundation of China (70031010) and the Research Foundation of Beijing Institute of TechnologyBiography: SHI Yong-feng (1980-), male, Master candidate, research direction: web information mining. 展开更多
关键词 text categorization naive bayes KNN SVM neural network
下载PDF
Lazy learner text categorization algorithm based on embedded feature selection 被引量:1
5
作者 Yan Peng Zheng Xuefeng +1 位作者 Zhu Jianyong Xiao Yunhong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第3期651-659,共9页
To avoid the curse of dimensionality, text categorization (TC) algorithms based on machine learning (ML) have to use an feature selection (FS) method to reduce the dimensionality of feature space. Although havin... To avoid the curse of dimensionality, text categorization (TC) algorithms based on machine learning (ML) have to use an feature selection (FS) method to reduce the dimensionality of feature space. Although having been widely used, FS process will generally cause information losing and then have much side-effect on the whole performance of TC algorithms. On the basis of the sparsity characteristic of text vectors, a new TC algorithm based on lazy feature selection (LFS) is presented. As a new type of embedded feature selection approach, the LFS method can greatly reduce the dimension of features without any information losing, which can improve both efficiency and performance of algorithms greatly. The experiments show the new algorithm can simultaneously achieve much higher both performance and efficiency than some of other classical TC algorithms. 展开更多
关键词 machine learning text categorization embedded feature selection lazy learner cosine similarity.
下载PDF
A Text Categorization System with Soft Real-Time Guarantee 被引量:1
6
作者 WANG Hua-yong CHEN Yu DAI Yi-qi 《Wuhan University Journal of Natural Sciences》 EI CAS 2006年第1期226-229,共4页
In order to provide predictable runtime performante for text categorization (TC) systems, an innovative system design method is proposed for soft real time TC systems. An analyzable mathematical model is established... In order to provide predictable runtime performante for text categorization (TC) systems, an innovative system design method is proposed for soft real time TC systems. An analyzable mathematical model is established to approximately describe the nonlinear and time-varying TC systems. According to this mathematical model, the feedback control theory is adopted to prove the system's stableness and zero steady state error. The experiments result shows that the error of deadline satisfied ratio in the system is kept within 4 of the desired value. And the number of classifiers can be dynamically adjusted by the system itself to save the computa tion resources. The proposed methodology enables the theo retical analysis and evaluation to the TC systems, leading to a high-quality and low cost implementation approach. 展开更多
关键词 information retrieval text categorization soft real-time system feedback control theory
下载PDF
A formal study of feature selection in text categorization 被引量:15
7
作者 XU Yan 《通讯和计算机(中英文版)》 2009年第4期32-41,共10页
关键词 特征分类 约束 文本分类 信息
下载PDF
Analysis of Semi-Supervised Text Clustering Algorithm on Marine Data
8
作者 Yu Jiang Dengwen Yu +3 位作者 Mingzhao Zhao Hongtao Bai Chong Wang Lili He 《Computers, Materials & Continua》 SCIE EI 2020年第7期207-216,共10页
Semi-supervised clustering improves learning performance as long as it uses a small number of labeled samples to assist un-tagged samples for learning.This paper implements and compares unsupervised and semi-supervise... Semi-supervised clustering improves learning performance as long as it uses a small number of labeled samples to assist un-tagged samples for learning.This paper implements and compares unsupervised and semi-supervised clustering analysis of BOA-Argo ocean text data.Unsupervised K-Means and Affinity Propagation(AP)are two classical clustering algorithms.The Election-AP algorithm is proposed to handle the final cluster number in AP clustering as it has proved to be difficult to control in a suitable range.Semi-supervised samples thermocline data in the BOA-Argo dataset according to the thermocline standard definition,and use this data for semi-supervised cluster analysis.Several semi-supervised clustering algorithms were chosen for comparison of learning performance:Constrained-K-Means,Seeded-K-Means,SAP(Semi-supervised Affinity Propagation),LSAP(Loose Seed AP)and CSAP(Compact Seed AP).In order to adapt the single label,this paper improves the above algorithms to SCKM(improved Constrained-K-Means),SSKM(improved Seeded-K-Means),and SSAP(improved Semi-supervised Affinity Propagationg)to perform semi-supervised clustering analysis on the data.A DSAP(Double Seed AP)semi-supervised clustering algorithm based on compact seeds is proposed as the experimental data shows that DSAP has a better clustering effect.The unsupervised and semi-supervised clustering results are used to analyze the potential patterns of marine data. 展开更多
关键词 Unsupervised learning semi-supervised learning text clustering
下载PDF
The Role of Rare Terms in Enhancing the Performance of Polynomial Networks Based Text Categorization
9
作者 Mayy M. Al-Tahrawi 《Journal of Intelligent Learning Systems and Applications》 2013年第2期84-89,共6页
In this paper, the role of rare or infrequent terms in enhancing the accuracy of English Text Categorization using Polynomial Networks (PNs) is investigated. To study the impact of rare terms in enhancing the accuracy... In this paper, the role of rare or infrequent terms in enhancing the accuracy of English Text Categorization using Polynomial Networks (PNs) is investigated. To study the impact of rare terms in enhancing the accuracy of PNs-based text categorization, different term reduction criteria as well as different term weighting schemes were experimented on the Reuters Corpus using PNs. Each term weighting scheme on each reduced term set was tested once keeping the rare terms and another time removing them. All the experiments conducted in this research show that keeping rare terms substantially improves the performance of Polynomial Networks in Text Categorization, regardless of the term reduction method, the number of terms used in classification, or the term weighting scheme adopted. 展开更多
关键词 POLYNOMIAL NETWORKS text categorization Document Classification Infrequent TERMS RARE TERMS
下载PDF
基于BERT模型的空管危险源文本数据挖掘
10
作者 杨昌其 姜美岑 林灵 《航空计算技术》 2024年第4期89-93,共5页
由于危险源与安全隐患在民航安全管理工作中容易出现概念混淆和记录混乱的情况,根据双重预防机制管理规定,需要将两者区分开来。通过在ASIS系统上采集得到空管危险源控制清单作为研究对象,并对其进行相应的文本数据挖掘工作。根据危险... 由于危险源与安全隐患在民航安全管理工作中容易出现概念混淆和记录混乱的情况,根据双重预防机制管理规定,需要将两者区分开来。通过在ASIS系统上采集得到空管危险源控制清单作为研究对象,并对其进行相应的文本数据挖掘工作。根据危险源与安全隐患特点构建相应的文本分类模型:首先通过文本清洗、去停用词、Jieba分词等对空管危险源控制清单进行预处理,然后基于BERT模型生成词向量,采用BERT-Base-Chinese预训练模型进行预训练,并对模型进行微调超参数,最后结合Softmax分类器得到分类结果。 展开更多
关键词 文本分类 数据挖掘 BERT模型 危险源 安全隐患
下载PDF
面向业务的资源按需解析模型构建研究
11
作者 刘耀 秦迅 刘天吉 《计算机科学》 CSCD 北大核心 2024年第10期178-186,共9页
针对在项目开发过程中新需求来临时,需要对自然语言处理工具和资源解析插件进行重新需求分析、重复开发等问题,提出了一套面向业务的资源按需解析方案。首先,提出了一种从需求到代码的资源按需解析方法,针对需求文本本身进行需求概念标... 针对在项目开发过程中新需求来临时,需要对自然语言处理工具和资源解析插件进行重新需求分析、重复开发等问题,提出了一套面向业务的资源按需解析方案。首先,提出了一种从需求到代码的资源按需解析方法,针对需求文本本身进行需求概念标引模型的构建。构建的需求概念标引模型的准确率、召回率、F1值等指标均高于其他分类模型。然后,针对需求文本与代码的关联,建立从需求文本到代码库类别的映射机制。对于模型的映射结果,使用前K准确率(percision@K)作为评价指标,最终准确率达到60%,具有一定的实用价值。综上所述,探索了一套具有需求解析能力、实现需求与代码关联的资源按需解析关键技术,并贯穿需求文本分类、需求代码库分类、代码库检索到插件生成的整个流程,形成了完整的“需求-代码-插件-解析”的业务闭环,通过实验验证了所提方法对于资源按需解析的有效性,为业务需求分析与软件复用提供了思路,与现有用于业务需求的解析和代码生成的大语言模型相比,所提方法聚焦于具体业务领域内的含有业务特点的插件代码复用全流程的实现。 展开更多
关键词 自然语言处理 需求模型 代码复用 文本解析 代码分类 代码检索
下载PDF
图书情报领域中外学者研究方法使用差异分析——跨语言文本分类的视角
12
作者 章成志 储新龙 +1 位作者 田亮 储荷婷 《情报理论与实践》 CSSCI 北大核心 2024年第9期45-58,共14页
[目的/意义]对学科研究方法的自省式分析对于理解学科发展和建立学科自主知识体系至关重要。通过研究国内外学者在研究方法上的使用差异,可以更全面地了解不同地区和文化背景下的研究者在应对不同研究问题所采用的策略和方法,从而促进... [目的/意义]对学科研究方法的自省式分析对于理解学科发展和建立学科自主知识体系至关重要。通过研究国内外学者在研究方法上的使用差异,可以更全面地了解不同地区和文化背景下的研究者在应对不同研究问题所采用的策略和方法,从而促进学术交流和跨国合作,并进一步推动学科的发展与学科知识体系的完善。[方法/过程]以图书情报领域5种高影响力中英文期刊中1990-2021年共30余年的学术论文为研究对象,采用跨语言文本分类方法对这些论文中的研究方法进行自动分类。然后从研究方法的使用频率与演化差异以及适用主题多样性差异两个角度,进行中外比较研究。[结果/结论]国外学者越来越倾向于使用定性方法,而对定量方法的使用正在减少。同时,国内外大多数研究方法的适用主题多样性都在增加。这项研究对于理解图书情报学科的发展、促进学术交流与合作以及提高国内学者的国际影响力具有重要意义。 展开更多
关键词 自动分类模型 研究方法分类 跨语言文本分类 研究方法使用
下载PDF
Semi-Supervised Learning in Large Scale Text Categorization
13
作者 许泽文 李建强 +3 位作者 刘博 毕敬 李蓉 毛睿 《Journal of Shanghai Jiaotong university(Science)》 EI 2017年第3期291-302,共12页
The rapid development of the Internet brings a variety of original information including text information, audio information, etc. However, it is difficult to find the most useful knowledge rapidly and accurately beca... The rapid development of the Internet brings a variety of original information including text information, audio information, etc. However, it is difficult to find the most useful knowledge rapidly and accurately because of its huge number. Automatic text classification technology based on machine learning can classify a large number of natural language documents into the corresponding subject categories according to its correct semantics. It is helpful to grasp the text information directly. By learning from a set of hand-labeled documents,we obtain the traditional supervised classifier for text categorization(TC). However, labeling all data by human is labor intensive and time consuming. To solve this problem, some scholars proposed a semi-supervised learning method to train classifier, but it is unfeasible for various kinds and great number of Web data since it still needs a part of hand-labeled data. In 2012, Li et al. invented a fully automatic categorization approach for text(FACT)based on supervised learning, where no manual labeling efforts are required. But automatically labeling all data can bring noise into experiment and cause the fact that the result cannot meet the accuracy requirement. We put forward a new idea that part of data with high accuracy can be automatically tagged based on the semantic of category name, then a semi-supervised way is taken to train classifier with both labeled and unlabeled data,and ultimately a precise classification of massive text data can be achieved. The empirical experiments show that the method outperforms the supervised support vector machine(SVM) in terms of both F1 performance and classification accuracy in most cases. It proves the effectiveness of the semi-supervised algorithm in automatic TC. 展开更多
关键词 text data mining semi-supervised automatic tagging CLASSIFIER
原文传递
基于双分支特征融合的电力设备缺陷文本挖掘方法
14
作者 张中文 吐松江·卡日 +2 位作者 张紫薇 崔传世 邵罗 《高压电器》 CAS CSCD 北大核心 2024年第6期188-196,共9页
针对电力设备缺陷文本信息的知识挖掘与分析任务中存在缺陷文本特征信息提取不足、缺陷文本分类精度不够的问题,提出一种基于BERT(bidirectional encoder representations from transformers)的双分支特征融合的电力设备缺陷文本分类模... 针对电力设备缺陷文本信息的知识挖掘与分析任务中存在缺陷文本特征信息提取不足、缺陷文本分类精度不够的问题,提出一种基于BERT(bidirectional encoder representations from transformers)的双分支特征融合的电力设备缺陷文本分类模型。首先,对缺陷文本数据进行预处理,删除异常缺陷文本,并归纳了电力设备缺陷文本特点;然后,采用BERT模型作为文本编码器,将文本转化为向量后分别输入至BiLSTMAttention(attention-based bidirectional long short-term memory)模块和多分支CNN(multi-scale convolutional neural network,MCNN)模块,提取缺陷文本语义信息特征和局部关键信息特征;最后,将所提取出的语义特征和多维关键特征向量进行融合,并通过Softmax层实现对缺陷文本分类。与基准模型BERT-BiLSTMAttention相比,其准确率、召回率及F1值分别提高了2.76%、3.58%和4.39%,表明所建模型在缺陷文本分类任务中性能的优越性。 展开更多
关键词 预训练模型 多维特征提取 语义信息特征 缺陷文本分类
下载PDF
基于MacBERT和联合注意力增强网络的物业服务投诉分类方法
15
作者 湛志宏 覃开贤 +1 位作者 彭凌华 湛铖 《广西科学》 CAS 北大核心 2024年第1期110-118,共9页
基于人工的物业投诉文件分类处理方法已经无法满足社会需求,并且已有投诉相关的自动分类方法在物业投诉分类问题上的性能较不足。因此,本研究提出一个基于MacBERT和联合注意力增强网络的物业服务投诉分类方法JAE BERT4Com。JAE BERT4Co... 基于人工的物业投诉文件分类处理方法已经无法满足社会需求,并且已有投诉相关的自动分类方法在物业投诉分类问题上的性能较不足。因此,本研究提出一个基于MacBERT和联合注意力增强网络的物业服务投诉分类方法JAE BERT4Com。JAE BERT4Com使用基于近义词替换与合成少数过采样技术结合的样本增强策略解决类不平衡的问题,以及基于MacBERT的分层注意力、Transformers的多头注意力和关键词注意力等多重注意力联合增强的网络进行文本特征学习和分类。实验结果表明,JAE BERT4Com能够获得比现有模型更高的准确率、F1分数和召回率,比现有较先进模型的性能更优。 展开更多
关键词 物业投诉 投诉分类 文本分类 注意力增强 深度学习
下载PDF
An up -to -date comparative analysis of the KNN classifier distance metrics for text categorization
16
作者 Onder Coban 《Data Science and Informetrics》 2023年第2期67-78,共12页
Text categorization(TC)is one of the widely studied branches of text mining and has many applications in different domains.It tries to automatically assign a text document to one of the predefined categories often by ... Text categorization(TC)is one of the widely studied branches of text mining and has many applications in different domains.It tries to automatically assign a text document to one of the predefined categories often by using machine learning(ML)techniques.Choosing the best classifier in this task is the most important step in which k-Nearest Neighbor(KNN)is widely employed as a classifier as well as several other well-known ones such as Support Vector Machine,Multinomial Naive Bayes,Logistic Regression,and so on.The KNN has been extensively used for TC tasks and is one of the oldest and simplest methods for pattern classification.Its performance crucially relies on the distance metric used to identify nearest neighbors such that the most frequently observed label among these neighbors is used to classify an unseen test instance.Hence,in this paper,a comparative analysis of the KNN classifier is performed on a subset(i.e.,R8)of the Reuters-21578 benchmark dataset for TC.Experimental results are obtained by using different distance metrics as well as recently proposed distance learning metrics under different cases where the feature model and term weighting scheme are different.Our comparative evaluation of the results shows that Bray-Curtis and Linear Discriminant Analysis(LDA)are often superior to the other metrics and work well with raw term frequency weights. 展开更多
关键词 text categorization k-nearest neighbor distance metric distance learning algorithms
原文传递
基于TextRank算法和互信息相似度的维吾尔文关键词提取及文本分类 被引量:8
17
作者 阿力甫.阿不都克里木 李晓 《计算机科学》 CSCD 北大核心 2016年第12期36-40,共5页
针对维吾尔语文本的分类问题,提出一种基于TextRank算法和互信息相似度的维吾尔文关键词提取及文本分类方法。首先,对输入文本进行预处理,滤除非维吾尔语的字符和停用词;然后,利用词语语义相似度、词语位置和词频重要性加权的TextRank... 针对维吾尔语文本的分类问题,提出一种基于TextRank算法和互信息相似度的维吾尔文关键词提取及文本分类方法。首先,对输入文本进行预处理,滤除非维吾尔语的字符和停用词;然后,利用词语语义相似度、词语位置和词频重要性加权的TextRank算法提取文本关键词集合;最后,根据互信息相似度度量,计算输入文本关键词集和各类关键词集的相似度,最终实现文本的分类。实验结果表明,该方案能够提取出具有较高识别度的关键词,当关键词集大小为1250时,平均分类率达到了91.2%。 展开更多
关键词 维吾尔语 文本分类 关键词提取 textRank算法 互信息相似度
下载PDF
TextCNN文本分类技术在OA系统中的应用研究 被引量:3
18
作者 皎海军 廖晨阳 +1 位作者 杜胜贤 于劲松 《办公自动化》 2020年第14期45-48,共4页
随着大数据的发展,传统的办公软件迎来新的发展趋势。本文将Text CNN深度学习网络引入政务便民服务的全电子化系统中,研究自然语言处理领域的文本分类技术与协同型OA系统融合的方法,以实现政府公文的分发推荐服务。本着辅助而不干预的原... 随着大数据的发展,传统的办公软件迎来新的发展趋势。本文将Text CNN深度学习网络引入政务便民服务的全电子化系统中,研究自然语言处理领域的文本分类技术与协同型OA系统融合的方法,以实现政府公文的分发推荐服务。本着辅助而不干预的原则,计算机的智能决策结果将清晰地反馈给公文分派员,以辅助其做出最终的判断。该服务解决了政府部门人员短缺,公文分发出错率高的问题有效减少退回率,加快了公文的流转效率。 展开更多
关键词 textCNN 协同型OA 自然语言处理(NLP) 文本分类
下载PDF
A Quantum Spatial Graph Convolutional Network for Text Classification 被引量:2
19
作者 Syed Mustajar Ahmad Shah Hongwei Ge +5 位作者 Sami Ahmed Haider Muhammad Irshad Sohail M.Noman Jehangir Arshad Asfandeyar Ahmad Talha Younas 《Computer Systems Science & Engineering》 SCIE EI 2021年第2期369-382,共14页
The data generated from non-Euclidean domains and its graphical representation(with complex-relationship object interdependence)applications has observed an exponential growth.The sophistication of graph data has pose... The data generated from non-Euclidean domains and its graphical representation(with complex-relationship object interdependence)applications has observed an exponential growth.The sophistication of graph data has posed consequential obstacles to the existing machine learning algorithms.In this study,we have considered a revamped version of a semi-supervised learning algorithm for graph-structured data to address the issue of expanding deep learning approaches to represent the graph data.Additionally,the quantum information theory has been applied through Graph Neural Networks(GNNs)to generate Riemannian metrics in closed-form of several graph layers.In further,to pre-process the adjacency matrix of graphs,a new formulation is established to incorporate high order proximities.The proposed scheme has shown outstanding improvements to overcome the deficiencies in Graph Convolutional Network(GCN),particularly,the information loss and imprecise information representation with acceptable computational overhead.Moreover,the proposed Quantum Graph Convolutional Network(QGCN)has significantly strengthened the GCN on semi-supervised node classification tasks.In parallel,it expands the generalization process with a significant difference by making small random perturbationsG of the graph during the training process.The evaluation results are provided on three benchmark datasets,including Citeseer,Cora,and PubMed,that distinctly delineate the superiority of the proposed model in terms of computational accuracy against state-of-the-art GCN and three other methods based on the same algorithms in the existing literature. 展开更多
关键词 text classification deep learning graph convolutional networks semi-supervised learning GPUS performance improvements
下载PDF
Automatic Classification of Unstructured Blog Text 被引量:1
20
作者 Mita K. Dalal Mukesh A. Zaveri 《Journal of Intelligent Learning Systems and Applications》 2013年第2期108-114,共7页
Automatic classification of blog entries is generally treated as a semi-supervised machine learning task, in which the blog entries are automatically assigned to one of a set of pre-defined classes based on the featur... Automatic classification of blog entries is generally treated as a semi-supervised machine learning task, in which the blog entries are automatically assigned to one of a set of pre-defined classes based on the features extracted from their textual content. This paper attempts automatic classification of unstructured blog entries by following pre-processing steps like tokenization, stop-word elimination and stemming;statistical techniques for feature set extraction, and feature set enhancement using semantic resources followed by modeling using two alternative machine learning models—the na?ve Bayesian model and the artificial neural network model. Empirical evaluations indicate that this multi-step classification approach has resulted in good overall classification accuracy over unstructured blog text datasets with both machine learning model alternatives. However, the na?ve Bayesian classification model clearly out-performs the ANN based classification model when a smaller feature-set is available which is usually the case when a blog topic is recent and the number of training datasets available is restricted. 展开更多
关键词 Automatic BLOG text Classification FEATURE Extraction Machine LEARNING Models semi-supervised LEARNING
下载PDF
上一页 1 2 50 下一页 到第
使用帮助 返回顶部