Exploring the effects of sowing date and ecological points on the yield of semi-winter wheat is of great significance.This study aims to reveal the effects of sowing date and ecological points on the climate resources...Exploring the effects of sowing date and ecological points on the yield of semi-winter wheat is of great significance.This study aims to reveal the effects of sowing date and ecological points on the climate resources associated with wheat yield in the Rice–Wheat Rotation System.With six sowing dates,the experiments were carried out in Donghai and Jianhu counties,Jiangsu Province,China using two semi-winter wheat varieties as the objects of this study.The basic seedlings of the first sowing date (S1) were planted at 300×10^(4)plants ha^(-1),which was increased by 10%for each of the delayed sowing dates (S2–S6).The results showed that the delay of sowing date decreased the number of days,the effective accumulated temperature and the cumulative solar radiation in the whole growth period.The yields of S1 were higher than those of S2 to S6 by 0.22–0.31,0.5–0.78,0.86–0.98,1.14–1.38,and 1.36–1.59 t ha^(–1),respectively.For a given sowing date,the growth days increased as the ecological point was moved north,while both mean daily temperature and effective accumulative temperature decreased,but the cumulative radiation increased.As a result,the yields at Donghai County were 0.01–0.39 t ha–1lower than those of Jianhu County for the six sowing dates.The effective accumulative temperature and cumulative radiation both had significant positive correlations with yield.The average temperature was significantly negatively correlated with the yield.The decrease in grain yield was mainly due to the declines in grains per spike and 1 000-grain weight caused by the increase in the daily temperature and the decrease in the effective accumulative temperature.展开更多
The replacement of winter wheat varieties has contributed significantly to yield improvement worldwide,with remarkable progress in China.Drawing on two sets of data,production yield from the National Bureau of Statist...The replacement of winter wheat varieties has contributed significantly to yield improvement worldwide,with remarkable progress in China.Drawing on two sets of data,production yield from the National Bureau of Statistics of China and experimental yield from literature,this study aims to(1)illustrate the increasing patterns of production yield among different provinces from 1978 to 2018 in China,(2)explore the genetic gain in yield and yield relevant traits through the variety replacement based on experimental yield from 1937 to 2016 in China,and(3)compare the yield gap between experimental yield and production yield.The results show that both the production and experimental yields significantly increased along with the variety replacement.The national annual yield increase ratio for the production yield was 1.67%from 1978 to 2018,varying from 0.96%in Sichuan Province to 2.78%in Hebei Province;such ratio for the experimental yield was 1.13%from 1937 to 2016.The yield gap between experimental and production yields decreased from the 1970s to the 2010s.This study reveals significant increases in some yield components consequent to variety replacement,including thousand-grain weight,kernel number per spike,and grain number per square meter;however,no change is shown in spike number per square meter.The biomass and harvest index consistently and significantly increased,whereas the plant height decreased significantly.展开更多
Plant height,spike,leaf,stem and grain morphologies are key components of plant architecture and related to wheat yield.A wheat(Triticum aestivum L.)mutant,wpa1,displaying temperaturedependent pleiotropic developmenta...Plant height,spike,leaf,stem and grain morphologies are key components of plant architecture and related to wheat yield.A wheat(Triticum aestivum L.)mutant,wpa1,displaying temperaturedependent pleiotropic developmental anomalies,was isolated.The WPA1 gene,encoding a von Willebrand factor type A(vWA)domain protein,was located on chromosome arm 7DS and isolated by map-based cloning.The functionality of WPA1 was validated by multiple independent EMS-induced mutants and gene editing.Phylogenetic analysis revealed that WPA1 is monocotyledon-specific in higher plants.The identification of WPA1 provides opportunity to study the temperature regulated wheat development and grain yield.展开更多
Water is the key factor limiting dryland wheat grain yield.Mulching affects crop yield and yield components by affecting soil moisture.Further research is needed to determine the relationships between yield components...Water is the key factor limiting dryland wheat grain yield.Mulching affects crop yield and yield components by affecting soil moisture.Further research is needed to determine the relationships between yield components and soil moisture with yield,and to identify the most important factor affecting grain yield under various mulching measures.A long-term 9-yearifeld experiment in the Loess Plateau of Northwest China was carried out with three treatments:no mulch (CK),plastic mulch (M_(P)) and straw mulch (M_(S)).Yield factors and soil moisture were measured,and the relationships between them were explored by correlation analysis,structural equation modeling and significance analysis.The results showed that compared with CK,the average grain yields of M_(P) and M_(S) increased by 13.0and 10.6%,respectively.The average annual grain yield of the M_(P) treatment was 134 kg ha^(–1) higher than the M_(S) treatment.There were no significant differences in yield components among the three treatments (P<0.05).Soil water storage of the M_(S) treatment was greater than the M_(P) treatment,although the differences were not statistically signifiant.Soil water storage during the summer fallow period (SWSSF) and soil water storage before sowing (SWSS) of M_(S) were significantly higher than in CK,which increased by 38.5 and 13.6%,respectively.The relationship between M_(P) and CK was not statistically significant for SWSSF,but the SWSS in M_(P) was significantly higher than in CK.In terms of soil water storage after harvest (SWSH) and water consumption in the growth period(ET),there were no signi?cant differences among the three treatments.Based on the three analysis methods,we found that spike number and ET were positively correlated with grain yield.However,the relative importance of spike number to yield was the greatest in the M_(P )and M_(S) treatments,while that of ET was the greatest in CK.Suifcient SWSSF could indirectly increase spike number and ET in the three treatments.Based on these results,mulch can improve yield and soil water storage.The most important factor affecting the grain yield of dryland wheat was spike number under mulching,and ET with CK.These findings may help us to understand the main factors influencing dryland wheat grain yield under mulching conditions compared to CK.展开更多
Gluten,known as the major allergen in wheat,has gained increasing concerns in industrialized countries,resulting in an urgent need for accurate,high-sensitive,and on-site detection of wheat gluten in complex food syst...Gluten,known as the major allergen in wheat,has gained increasing concerns in industrialized countries,resulting in an urgent need for accurate,high-sensitive,and on-site detection of wheat gluten in complex food systems.Herein,we proposed a silver nanoparticles(AgNPs)/metal-organic framework(MOF)substrate-based surface-enhanced Raman scattering(SERS)sensor for the high-sensitive on-site detection of wheat gluten.The detection occurred on the newly in-situ synthesized AgNPs/MOF-modified SERS substrate,providing an enhancement factor(EF)of 1.89×10^(5).Benefitting from the signal amplification function of AgNPs/MOF and the superiority of SERS,this sensor represented high sensitivity performance and a wide detection range from 1×10^(-15)mol/L to 2×10^(-6)mol/L with a detection limit of 1.16×10^(-16)mol/L,which allowed monitoring the trace of wheat gluten in complex food system without matrix interference.This reliable sandwich SERS sensor may provide a promising platform for high-sensitive,accurate,and on-site detection of allergens in the field of food safety.展开更多
In order to further improve the utility of unmanned aerial vehicle(UAV)remote-sensing for quickly and accurately monitoring the growth of winter wheat under film mulching, this study examined the treatments of ridge m...In order to further improve the utility of unmanned aerial vehicle(UAV)remote-sensing for quickly and accurately monitoring the growth of winter wheat under film mulching, this study examined the treatments of ridge mulching,ridge–furrow full mulching, and flat cropping full mulching in winter wheat.Based on the fuzzy comprehensive evaluation (FCE) method, four agronomic parameters (leaf area index, above-ground biomass, plant height, and leaf chlorophyll content) were used to calculate the comprehensive growth evaluation index (CGEI) of the winter wheat, and 14 visible and near-infrared spectral indices were calculated using spectral purification technology to process the remote-sensing image data of winter wheat obtained by multispectral UAV.Four machine learning algorithms, partial least squares, support vector machines, random forests, and artificial neural network networks(ANN), were used to build the winter wheat growth monitoring model under film mulching, and accuracy evaluation and mapping of the spatial and temporal distribution of winter wheat growth status were carried out.The results showed that the CGEI of winter wheat under film mulching constructed using the FCE method could objectively and comprehensively evaluate the crop growth status.The accuracy of remote-sensing inversion of the CGEI based on the ANN model was higher than for the individual agronomic parameters, with a coefficient of determination of 0.75,a root mean square error of 8.40, and a mean absolute value error of 6.53.Spectral purification could eliminate the interference of background effects caused by mulching and soil, effectively improving the accuracy of the remotesensing inversion of winter wheat under film mulching, with the best inversion effect achieved on the ridge–furrow full mulching area after spectral purification.The results of this study provide a theoretical reference for the use of UAV remote-sensing to monitor the growth status of winter wheat with film mulching.展开更多
Abscisic acid(ABA),hydrogen peroxide(H_(2)O_(2)) and ascorbate(AsA)–glutathione(GSH)cycle are widely known for their participation in various stresses.However,the relationship between ABA and H_(2)O_(2) levels and th...Abscisic acid(ABA),hydrogen peroxide(H_(2)O_(2)) and ascorbate(AsA)–glutathione(GSH)cycle are widely known for their participation in various stresses.However,the relationship between ABA and H_(2)O_(2) levels and the AsA–GSH cycle under drought stress in wheat has not been studied.In this study,a hydroponic experiment was conducted in wheat seedlings subjected to 15%polyethylene glycol(PEG)6000–induced dehydration.Drought stress caused the rapid accumulation of endogenous ABA and H_(2)O_(2) and significantly decreased the number of root tips compared with the control.The application of ABA significantly increased the number of root tips,whereas the application of H_(2)O_(2) markedly reduced the number of root tips,compared with that under 15%PEG-6000.In addition,drought stress markedly increased the DHA,GSH and GSSG levels,but decreased the AsA levels,AsA/DHA and GSH/GSSG ratios compared with those in the control.The activities of the four enzymes in the AsA–GSH cycle were also markedly increased under drought stress,including glutathione reductase(GR),ascorbate peroxidase(APX),monodehydroascorbate reductase(MDHAR)and dehydroascorbate reductase(DHAR),compared with those in the control.However,the application of an ABA inhibitor significantly inhibited GR,DHAR and APX activities,whereas the application of an H_(2)O_(2) inhibitor significantly inhibited DHAR and MDHAR activities.Furthermore,the application of ABA inhibitor significantly promoted the increases of H_(2)O_(2) and the application of H_(2)O_(2) inhibitor significantly blocked the increases of ABA,compared with those under 15% PEG-6000.Taken together,the results indicated that ABA and H_(2)O_(2) probably interact under drought stress in wheat;and both of them can mediate drought stress by modulating the enzymes in AsA–GSH cycle,where ABA acts as the main regulator of GR,DHAR,and APX activities,and H_(2)O_(2) acts as the main regulator of DHAR and MDHAR activities.展开更多
In this study, ozone gas was applied to samples of durum wheat stored in four experimental groups (durum wheat without any treatment for comparison, durum wheat treated with ozone, purified durum wheat, and purified d...In this study, ozone gas was applied to samples of durum wheat stored in four experimental groups (durum wheat without any treatment for comparison, durum wheat treated with ozone, purified durum wheat, and purified durum wheat treated with ozone). Two groups were treated with ozone gas at 3 ppm concentration for 1 hour. Groups were then placed in air-tight glass jars and stored for 6 months at variable temperatures between 24.7°C to 34.8°C. Microbiological (total count bacteria, yeast/molds and coliform) and physical properties (moisture, color and ash) evaluated. Ozone application statistically caused a significant reduction in the numbers of bacteria, yeast, molds and coliforms. Ozone application, washing process and storage temperature are the major factors affecting the microbial counts. No significant differences were determined in moisture and ash contents of samples after ozone treatment. The color measurement results showed that color values of wheat samples were affected by ozone treatment, storage and washing.展开更多
Wheat is one of the most important cereals in the world, serving as a staple for millions globally. In the wake of the geopolitical crisis between Russia and Ukraine, it has become incumbent for many countries to inve...Wheat is one of the most important cereals in the world, serving as a staple for millions globally. In the wake of the geopolitical crisis between Russia and Ukraine, it has become incumbent for many countries to invest in wheat production. Improving cropping systems for wheat production is paramount. Intercropping cereals with legumes has tremendous advantages. Therefore, this study was designed to optimize wheat production by intercropping it with soybean at different densities. Between March and August 2023, a randomized complete block design trial was conducted in Bambili, North West of Cameroon with treatments T1 (wheat monocrop at 200,000 plants ha<sup>−</sup><sup>1</sup>), T2 (soybean monocrop at 250,000 plants ha<sup>−</sup><sup>1</sup>), T3 (200,000 wheat and 125,000 soybean ha<sup>−</sup><sup>1</sup>), T4 (100,000 wheat and 250,000 soybean ha<sup>−</sup><sup>1</sup>), T5 (200,000 wheat and 250,000 soybean ha<sup>−</sup><sup>1</sup>) and T6 (100,000 wheat and 125,000 soybean ha<sup>−</sup><sup>1</sup>). Results revealed that growth parameters of wheat were not significantly influenced by monocrop or intercrop. The yield of wheat was significantly higher in the monocrop than the intercrop treatments, with slight variation amongst the intercrop treatments. Soybean yield was higher in the monocrop than in the intercrop, with no variations amongst the intercrop treatments. Only the land equivalence ratio (LER) for T5 was greater than 1.0. The competitive ratio for T5 was 0.54 for wheat and 1.90 for soybean, comparatively lower than the other monocrop treatments. Intercropping wheat and soybean at 200,000:250,000 ratio is recommended.展开更多
Dough improvers are substances with functional characteristics used in baking industry to enhance dough properties. Currently, the baking industry is faced with increasing demand for natural ingredients owing to incre...Dough improvers are substances with functional characteristics used in baking industry to enhance dough properties. Currently, the baking industry is faced with increasing demand for natural ingredients owing to increasing consumer awareness, thus contributing to the rising demand for natural hydrocolloids. Gum Arabic from Acacia senegal var. kerensis is a natural gum exhibiting excellent water binding and emulsification capacity. However, very little is reported on how it affects the rheological properties of wheat dough. The aim of this study was therefore, to determine the rheological properties of wheat dough with partial additions of gum Arabic as an improver. Six treatments were analyzed comprising of: flour-gum blends prepared by adding gum Arabic to wheat flour at different levels (1%, 2% and 3%), plain wheat flour (negative control), commercial bread flour and commercial chapati flour (positive controls). The rheological properties were determined using Brabender Farinograph, Brabender Extensograph and Brabender Viscograph. Results showed that addition of gum Arabic significantly (p chapati. These findings support the need to utilize gum Arabic from Acacia senegal var. kerensis as a dough improver.展开更多
Biogasification of coal is important for clean utilization of coal. Experiments on the fermentation of single lignite, single straw and their mixture were performed to explore the variation characteristics of gas prod...Biogasification of coal is important for clean utilization of coal. Experiments on the fermentation of single lignite, single straw and their mixture were performed to explore the variation characteristics of gas production potential, microbial community and methanogenic metabolic pathways of mixture. Research has shown that mixed fermentation of lignite and straw significantly promoted biomethane production. The abundance of hydrolytic acidifying functional bacteria genera (Sphaerochaeta, Lentimicrobium) in mixed fermentation was higher than that in the fermentation of single lignite and single straw. The abundance of some key CAZy metabolic enzyme gene sequences in mixed fermentation group was increased, which was favorable to improve methane production. Aceticlastic methanogenesis was the most critical methanogenic pathway and acetic acid pathway was more competitive in methanogenic mode during peak fermentation. Macrogenomics provided theoretical support for the claim that mixed fermentation of coal and straw promoted biomethane metabolism, which was potentially valuable in expanding methanogenesis from mixed fermentation of lignite with different biomasses.展开更多
In the current issue of The Crop Journal,Chen et al.[1]reports map-based cloning of a wheat gene that showed temperaturedependent pleiotropic effects on multiple traits including plant height,leaf shape,spike and grai...In the current issue of The Crop Journal,Chen et al.[1]reports map-based cloning of a wheat gene that showed temperaturedependent pleiotropic effects on multiple traits including plant height,leaf shape,spike and grain morphology,and accordingly was named WPA1 for Wheat Plant Architecture 1.The mutant was first observed among EMS-treated plants and repeatedly appeared in multiple occasions.展开更多
Bread wheat(Triticum aestivum)is a staple food crop worldwide.The genetic dissection of important nutrient traits is essential for the biofortification of wheat to meet the nutritional needs of the world's growing...Bread wheat(Triticum aestivum)is a staple food crop worldwide.The genetic dissection of important nutrient traits is essential for the biofortification of wheat to meet the nutritional needs of the world's growing population.Here,45,298 single-nucleotide polymorphisms(SNPs)from 55K chip arrays were used to genotype a panel of 768 wheat cultivars,and a total of 154 quantitative trait loci(QTLs)were detected for eight traits under three environments by genome-wide association study(GWAS).Three QTLs(qMn-3B.1,qFe-3B.4,and qSe-3B.1/qFe-3B.6)detected repeatedly under different environments or traits were subjected to subsequent analyses based on linkage disequilibrium decay and the P-values of significant SNPs.Significant SNPs in the three QTL regions formed six haplotypes for qMn-3B.1,three haplotypes for qFe-3B.4,and three haplotypes for qSe-3B.1/qFe-3B.6.Phenotypic analysis revealed significant differences among haplotypes.These results indicated that the concentrations of several nutrient elements have been modified during the domestication of landraces to modern wheat.Based on the QTL regions,we identified 15 high-confidence genes,eight of which were stably expressed in different tissues and/or developmental stages.TraesCS3B02G046100 in qMn-3B.1 and TraesCS3B02G199500 in qSe-3B.1/qFe-3B.6 were both inferred to interact with metal ions according to the Gene Ontology(GO)analysis.TraesCS3B02G199000,which belongs to qSe-3B.1/qFe-3B.6,was determined to be a member of the WRKY gene family.Overall,this study provides several reliable QTLs that may significantly affect the concentrations of nutrient elements in wheat grain,and this information will facilitate the breeding of wheat cultivars with improved grain properties.展开更多
In order to provide basic design parameters for the industrial pyrolysis process,the transformation behavior of nitrogen was investigated using wheat straw as raw material.The distributions of nitrogen in pyrolysis ch...In order to provide basic design parameters for the industrial pyrolysis process,the transformation behavior of nitrogen was investigated using wheat straw as raw material.The distributions of nitrogen in pyrolysis char,oil,and gas were obtained and the nitrogenous components in the products were analyzed systematically by X-ray photoelectron spectroscopy(XPS),pyrolysis-gas chromatography/mass spectrometry(Py-GC/MS)and thermogravimetric-Fourier transform infrared spectrometry(TG-FTIR).The nitrogen distribution ranges of the pyrolysis char,oil,and gas were 37.34%–54.82%,32.87%–40.94%and 10.20%–28.83%,respectively.More nitrogen was retained in char at lower pyrolysis temperature and the nitrogen distribution of oil was from rise to decline with increasing temperature.The most abundant N-containing compounds in three-phase products were pyrrole-N,amines,and HCN,respectively.In addition,the transformation mechanism of nitrogen from wheat straw to pyrolysis products was concluded.展开更多
The use of hybrid wheat is one way to improve the yield in the future.However,greater plant heights increase lodging risk to some extent.In this study,two hybrid combinations with differences in lodging resistance wer...The use of hybrid wheat is one way to improve the yield in the future.However,greater plant heights increase lodging risk to some extent.In this study,two hybrid combinations with differences in lodging resistance were used to analyze the stem-related traits during the filling stage,and to investigate the mechanism of the difference in lodging resistance by analyzing lignin synthesis of the basal second internode(BSI).The stem-related traits such as the breaking strength,stem pole substantial degree(SPSD),and rind penetration strength(RPS),as well as the lignin content of the lodging-resistant combination(LRC),were significantly higher than those of the lodgingsensitive combination(LSC).The phenylpropanoid biosynthesis pathway was significantly and simultaneously enriched according to the transcriptomics and metabolomics analysis at the later filling stage.A total of 35 critical regulatory genes involved in the phenylpropanoid pathway were identified.Moreover,42%of the identified genes were significantly and differentially expressed at the later grain-filling stage between the two combinations,among which more than 80%were strongly up-regulated at that stage in the LRC compared with LSC.On the contrary,the LRC displayed lower contents of lignin intermediate metabolites than the LSC.These results suggested that the key to the lodging resistance formation of LRC is largely the higher lignin synthesis at the later grain-filling stage.Finally,breeding strategies for synergistically improving plant height and lodging resistance of hybrid wheat were put forward by comparing the LRC with the conventional wheat applied in large areas.展开更多
Agriculture is amongst the major occupations in Cameroon where over 70% of citizens are involved and it contributes enormously to the economy of the country. Wheat is one of the most consumed cereals in Cameroon with ...Agriculture is amongst the major occupations in Cameroon where over 70% of citizens are involved and it contributes enormously to the economy of the country. Wheat is one of the most consumed cereals in Cameroon with very high importation rate. However, the adoption of wheat production in the cropping system could have the potential to pull farmers out of poverty. It is essential in human foods and animal feeds. This study aims to investigate on the adaptability of wheat varieties based on growth traits and yield as well as to estimate the gluten content in each of the tested variety in the North-West region. Eight wheat varieties (five from CIMMYT, two from IRAD and one local variety) were evaluated in a factorial design with two types of fertilization (organic and inorganic), in two site (Santa and UBa farm) and five environments. Agro-morphological data were collected and were subjected to the analysis of variance using R software. The gluten content related to the baking quality of wheat flour was estimated per tested variety. Highly significant differences were observed among varieties, sites, environment and fertilization for all parameters estimated. The general mean of all the traits evaluated was significantly higher when using organic fertilizer than inorganic, meaning that the application of organic fertilizer provides better performance of wheat growth. The elevated number of tillers found in Santa could inform on the high level of soil fertility for wheat production in that area. Environment 1 was found to be the best follow by environment 3 and 5. IRAD I gave the highest yield followed by Alexander Wonder and IRAD II. 11SATYND and 29SAWYT were promising introduced varieties in term of grain weight when using organic fertilization. Wet and dry gluten yield varied from 3.8 (ALEXANDER Wonder) to 5.5 (IRAD I) and from 3.7 (IRAD II) to 7.9 (IRAD I) respectively. All the introduced wheat varieties expressed low wet and dry gluten yield as compare to the check Amigo. IRAD I was the best variety to be produced for industrial purposes taken into account the high level of gluten content. IRAD I, 42ESWYTB and IRAD II were found to have their moisture content percentage of flour below that of the check (Amigo) and therefore could be recommended for manufactured foods.展开更多
Lodging is still the key factor that limits continuous increases in wheat yields today,because the mechanical strength of culms is reduced due to low-light stress in populations under high-yield cultivation.The mechan...Lodging is still the key factor that limits continuous increases in wheat yields today,because the mechanical strength of culms is reduced due to low-light stress in populations under high-yield cultivation.The mechanical properties of the culm are mainly determined by lignin,which is affected by the light environment.However,little is known about whether the light environment can be sufficiently improved by changing the population distribution to inhibit culm lodging.Therefore,in this study,we used the wheat cultivar“Xinong 979”to establish a low-density homogeneous distribution treatment(LD),high-density homogeneous distribution treatment(HD),and high-density heterogeneous distribution treatment(HD-h)to study the regulatory effects and mechanism responsible for differences in the lodging resistance of wheat culms under different population distributions.Compared with LD,HD significantly reduced the light transmittance in the middle and basal layers of the canopy,the net photosynthetic rate in the middle and lower leaves of plants,the accumulation of lignin in the culm,and the breaking resistance of the culm,and thus the lodging index values increased significantly,with lodging rates of 67.5%in 2020–2021 and 59.3%in 2021–2022.Under HD-h,the light transmittance and other indicators in the middle and basal canopy layers were significantly higher than those under HD,and the lodging index decreased to the point that no lodging occurred.Compared with LD,the activities of phenylalanine ammonia-Lyase(PAL),4-coumarate:coenzyme A ligase(4CL),catechol-O-methyltransferase(COMT),and cinnamyl-alcohol dehydrogenase(CAD)in the lignin synthesis pathway were significantly reduced in the culms under HD during the critical period for culm formation,and the relative expression levels of TaPAL,Ta4CL,TaCOMT,and TaCAD were significantly downregulated.However,the activities of lignin synthesis-related enzymes and their gene expression levels were significantly increased under HD-h compared with HD.A partial least squares path modeling analysis found significant positive effects between the canopy light environment,the photosynthetic capacity of the middle and lower leaves of plants,lignin synthesis and accumulation,and lodging resistance in the culms.Thus,under conventional high-density planting,the risk of wheat lodging was significantly higher.Accordingly,the canopy light environment can be optimized by changing the heterogeneity of the population distribution to improve the photosynthetic capacity of the middle and lower leaves of plants,promote lignin accumulation in the culm,and enhance lodging resistance in wheat.These findings provide a basis for understanding the mechanism responsible for the lower mechanical strength of the culm under high-yield wheat cultivation,and a theoretical basis and for developing technical measures to enhance lodging resistance.展开更多
Low temperatures during germination inhibit seed growth,lead to small and weak seedlings,and significantly reduce the wheat yield.Alleviating the adverse effects of low temperature on wheat seed germination is highly ...Low temperatures during germination inhibit seed growth,lead to small and weak seedlings,and significantly reduce the wheat yield.Alleviating the adverse effects of low temperature on wheat seed germination is highly important for achieving high and stable wheat yields.In this study,Tongmai 6(insensitive)and Zhengmai 113(sensitive),which have different low-temperature sensitivities during germination were treated with low temperature during germination.The transcriptome,metabolome and physiological data revealed that low temperature decreased the germination rate,downregulated the expression of a large number of genes involved in regulating glycometabolism,and inhibited carbon,nitrogen(especially amino acids)and energy metabolism in the seeds.Arginine content increased at low temperature,and its increase in the low-temperature-tolerant variety was significantly greater than that in the sensitive variety.Arginine priming experiment showed that treatment with an appropriate concentration of arginine improved the seed germination rate.The conversion of starch to soluble sugar significantly increased under exogenous arginine conditions,the content of key metabolites in energy metabolism increased,and the utilization of ATP in the seeds increased.Taken together,arginine priming increased seed germination at low temperature by relieving inhibition of seed carbon and nitrogen metabolism and improving seed energy metabolism.展开更多
Vernalization is necessary for winter wheat to flower.However,it is unclear whether vernalization is also required for spring wheat,which is frequently sown in fall,and what molecular mechanisms underlie the vernaliza...Vernalization is necessary for winter wheat to flower.However,it is unclear whether vernalization is also required for spring wheat,which is frequently sown in fall,and what molecular mechanisms underlie the vernalization response in wheat varieties.In this study,we examined the molecular mechanisms that regulate vernalization response in winter and spring wheat varieties.For this purpose,we determined how major vernalization genes(VRN1,VRN2,and VRN3)respond to vernalization in these varieties and whether modifications to histones play a role in changes in gene expression.We also identified genes that are differentially regulated in response to vernalization in winter and spring wheat varieties.We found that in winter wheat,but not in spring wheat,VRN1 expression decreases when returned to warm temperature following vernalization.This finding may be associated with differences between spring and winter wheat in the levels of tri-methylation of lysine 27 on histone H3(H3K27me3)and tri-methylation of lysine 4 on histone H3(H3K4me3)at the VRN1 gene.Analysis of winter wheat transcriptomes before and after vernalization revealed that vernalization influences the expression of several genes,including those involved in leucine catabolism,cysteine biosynthesis,and flavonoid biosynthesis.These findings provide new candidates for further study on the mechanism of vernalization regulation in wheat.展开更多
基金the Jiangsu Demonstration Project of Modern Agricultural Machinery Equipment and Technology, China (NJ2020-58, NJ2019-33, NJ2021-63)。
文摘Exploring the effects of sowing date and ecological points on the yield of semi-winter wheat is of great significance.This study aims to reveal the effects of sowing date and ecological points on the climate resources associated with wheat yield in the Rice–Wheat Rotation System.With six sowing dates,the experiments were carried out in Donghai and Jianhu counties,Jiangsu Province,China using two semi-winter wheat varieties as the objects of this study.The basic seedlings of the first sowing date (S1) were planted at 300×10^(4)plants ha^(-1),which was increased by 10%for each of the delayed sowing dates (S2–S6).The results showed that the delay of sowing date decreased the number of days,the effective accumulated temperature and the cumulative solar radiation in the whole growth period.The yields of S1 were higher than those of S2 to S6 by 0.22–0.31,0.5–0.78,0.86–0.98,1.14–1.38,and 1.36–1.59 t ha^(–1),respectively.For a given sowing date,the growth days increased as the ecological point was moved north,while both mean daily temperature and effective accumulative temperature decreased,but the cumulative radiation increased.As a result,the yields at Donghai County were 0.01–0.39 t ha–1lower than those of Jianhu County for the six sowing dates.The effective accumulative temperature and cumulative radiation both had significant positive correlations with yield.The average temperature was significantly negatively correlated with the yield.The decrease in grain yield was mainly due to the declines in grains per spike and 1 000-grain weight caused by the increase in the daily temperature and the decrease in the effective accumulative temperature.
基金This research was financially supported by the Natural Science Basic Research Program of Shaanxi,China(2022JM-126)the National Natural Science Foundation of China(52079132).
文摘The replacement of winter wheat varieties has contributed significantly to yield improvement worldwide,with remarkable progress in China.Drawing on two sets of data,production yield from the National Bureau of Statistics of China and experimental yield from literature,this study aims to(1)illustrate the increasing patterns of production yield among different provinces from 1978 to 2018 in China,(2)explore the genetic gain in yield and yield relevant traits through the variety replacement based on experimental yield from 1937 to 2016 in China,and(3)compare the yield gap between experimental yield and production yield.The results show that both the production and experimental yields significantly increased along with the variety replacement.The national annual yield increase ratio for the production yield was 1.67%from 1978 to 2018,varying from 0.96%in Sichuan Province to 2.78%in Hebei Province;such ratio for the experimental yield was 1.13%from 1937 to 2016.The yield gap between experimental and production yields decreased from the 1970s to the 2010s.This study reveals significant increases in some yield components consequent to variety replacement,including thousand-grain weight,kernel number per spike,and grain number per square meter;however,no change is shown in spike number per square meter.The biomass and harvest index consistently and significantly increased,whereas the plant height decreased significantly.
基金supported by the Key Research and Development Program of Zhejiang(2024SSYS0099)the National Key Research and Development Program of China(2022YFD1200203)Key Research and Development Program of Hebei province(22326305D).
文摘Plant height,spike,leaf,stem and grain morphologies are key components of plant architecture and related to wheat yield.A wheat(Triticum aestivum L.)mutant,wpa1,displaying temperaturedependent pleiotropic developmental anomalies,was isolated.The WPA1 gene,encoding a von Willebrand factor type A(vWA)domain protein,was located on chromosome arm 7DS and isolated by map-based cloning.The functionality of WPA1 was validated by multiple independent EMS-induced mutants and gene editing.Phylogenetic analysis revealed that WPA1 is monocotyledon-specific in higher plants.The identification of WPA1 provides opportunity to study the temperature regulated wheat development and grain yield.
基金supported financially by the National Key Research and Development Program of China(2021YFD1900703)the National Natural Science Foundation of China(31272250)。
文摘Water is the key factor limiting dryland wheat grain yield.Mulching affects crop yield and yield components by affecting soil moisture.Further research is needed to determine the relationships between yield components and soil moisture with yield,and to identify the most important factor affecting grain yield under various mulching measures.A long-term 9-yearifeld experiment in the Loess Plateau of Northwest China was carried out with three treatments:no mulch (CK),plastic mulch (M_(P)) and straw mulch (M_(S)).Yield factors and soil moisture were measured,and the relationships between them were explored by correlation analysis,structural equation modeling and significance analysis.The results showed that compared with CK,the average grain yields of M_(P) and M_(S) increased by 13.0and 10.6%,respectively.The average annual grain yield of the M_(P) treatment was 134 kg ha^(–1) higher than the M_(S) treatment.There were no significant differences in yield components among the three treatments (P<0.05).Soil water storage of the M_(S) treatment was greater than the M_(P) treatment,although the differences were not statistically signifiant.Soil water storage during the summer fallow period (SWSSF) and soil water storage before sowing (SWSS) of M_(S) were significantly higher than in CK,which increased by 38.5 and 13.6%,respectively.The relationship between M_(P) and CK was not statistically significant for SWSSF,but the SWSS in M_(P) was significantly higher than in CK.In terms of soil water storage after harvest (SWSH) and water consumption in the growth period(ET),there were no signi?cant differences among the three treatments.Based on the three analysis methods,we found that spike number and ET were positively correlated with grain yield.However,the relative importance of spike number to yield was the greatest in the M_(P )and M_(S) treatments,while that of ET was the greatest in CK.Suifcient SWSSF could indirectly increase spike number and ET in the three treatments.Based on these results,mulch can improve yield and soil water storage.The most important factor affecting the grain yield of dryland wheat was spike number under mulching,and ET with CK.These findings may help us to understand the main factors influencing dryland wheat grain yield under mulching conditions compared to CK.
基金financially supported by the Zhejiang Provincial Natural Science Foundation of China(LY21C200008)。
文摘Gluten,known as the major allergen in wheat,has gained increasing concerns in industrialized countries,resulting in an urgent need for accurate,high-sensitive,and on-site detection of wheat gluten in complex food systems.Herein,we proposed a silver nanoparticles(AgNPs)/metal-organic framework(MOF)substrate-based surface-enhanced Raman scattering(SERS)sensor for the high-sensitive on-site detection of wheat gluten.The detection occurred on the newly in-situ synthesized AgNPs/MOF-modified SERS substrate,providing an enhancement factor(EF)of 1.89×10^(5).Benefitting from the signal amplification function of AgNPs/MOF and the superiority of SERS,this sensor represented high sensitivity performance and a wide detection range from 1×10^(-15)mol/L to 2×10^(-6)mol/L with a detection limit of 1.16×10^(-16)mol/L,which allowed monitoring the trace of wheat gluten in complex food system without matrix interference.This reliable sandwich SERS sensor may provide a promising platform for high-sensitive,accurate,and on-site detection of allergens in the field of food safety.
基金This study was funded by the National Key R&D Program of China(2021YFD1900700)the National Natural Science Foundation of China(51909221)the China Postdoctoral Science Foundation(2020T130541 and 2019M650277).
文摘In order to further improve the utility of unmanned aerial vehicle(UAV)remote-sensing for quickly and accurately monitoring the growth of winter wheat under film mulching, this study examined the treatments of ridge mulching,ridge–furrow full mulching, and flat cropping full mulching in winter wheat.Based on the fuzzy comprehensive evaluation (FCE) method, four agronomic parameters (leaf area index, above-ground biomass, plant height, and leaf chlorophyll content) were used to calculate the comprehensive growth evaluation index (CGEI) of the winter wheat, and 14 visible and near-infrared spectral indices were calculated using spectral purification technology to process the remote-sensing image data of winter wheat obtained by multispectral UAV.Four machine learning algorithms, partial least squares, support vector machines, random forests, and artificial neural network networks(ANN), were used to build the winter wheat growth monitoring model under film mulching, and accuracy evaluation and mapping of the spatial and temporal distribution of winter wheat growth status were carried out.The results showed that the CGEI of winter wheat under film mulching constructed using the FCE method could objectively and comprehensively evaluate the crop growth status.The accuracy of remote-sensing inversion of the CGEI based on the ANN model was higher than for the individual agronomic parameters, with a coefficient of determination of 0.75,a root mean square error of 8.40, and a mean absolute value error of 6.53.Spectral purification could eliminate the interference of background effects caused by mulching and soil, effectively improving the accuracy of the remotesensing inversion of winter wheat under film mulching, with the best inversion effect achieved on the ridge–furrow full mulching area after spectral purification.The results of this study provide a theoretical reference for the use of UAV remote-sensing to monitor the growth status of winter wheat with film mulching.
基金This research was funded by the National Key Research and Development Program of China(2023YFD2301505).
文摘Abscisic acid(ABA),hydrogen peroxide(H_(2)O_(2)) and ascorbate(AsA)–glutathione(GSH)cycle are widely known for their participation in various stresses.However,the relationship between ABA and H_(2)O_(2) levels and the AsA–GSH cycle under drought stress in wheat has not been studied.In this study,a hydroponic experiment was conducted in wheat seedlings subjected to 15%polyethylene glycol(PEG)6000–induced dehydration.Drought stress caused the rapid accumulation of endogenous ABA and H_(2)O_(2) and significantly decreased the number of root tips compared with the control.The application of ABA significantly increased the number of root tips,whereas the application of H_(2)O_(2) markedly reduced the number of root tips,compared with that under 15%PEG-6000.In addition,drought stress markedly increased the DHA,GSH and GSSG levels,but decreased the AsA levels,AsA/DHA and GSH/GSSG ratios compared with those in the control.The activities of the four enzymes in the AsA–GSH cycle were also markedly increased under drought stress,including glutathione reductase(GR),ascorbate peroxidase(APX),monodehydroascorbate reductase(MDHAR)and dehydroascorbate reductase(DHAR),compared with those in the control.However,the application of an ABA inhibitor significantly inhibited GR,DHAR and APX activities,whereas the application of an H_(2)O_(2) inhibitor significantly inhibited DHAR and MDHAR activities.Furthermore,the application of ABA inhibitor significantly promoted the increases of H_(2)O_(2) and the application of H_(2)O_(2) inhibitor significantly blocked the increases of ABA,compared with those under 15% PEG-6000.Taken together,the results indicated that ABA and H_(2)O_(2) probably interact under drought stress in wheat;and both of them can mediate drought stress by modulating the enzymes in AsA–GSH cycle,where ABA acts as the main regulator of GR,DHAR,and APX activities,and H_(2)O_(2) acts as the main regulator of DHAR and MDHAR activities.
文摘In this study, ozone gas was applied to samples of durum wheat stored in four experimental groups (durum wheat without any treatment for comparison, durum wheat treated with ozone, purified durum wheat, and purified durum wheat treated with ozone). Two groups were treated with ozone gas at 3 ppm concentration for 1 hour. Groups were then placed in air-tight glass jars and stored for 6 months at variable temperatures between 24.7°C to 34.8°C. Microbiological (total count bacteria, yeast/molds and coliform) and physical properties (moisture, color and ash) evaluated. Ozone application statistically caused a significant reduction in the numbers of bacteria, yeast, molds and coliforms. Ozone application, washing process and storage temperature are the major factors affecting the microbial counts. No significant differences were determined in moisture and ash contents of samples after ozone treatment. The color measurement results showed that color values of wheat samples were affected by ozone treatment, storage and washing.
文摘Wheat is one of the most important cereals in the world, serving as a staple for millions globally. In the wake of the geopolitical crisis between Russia and Ukraine, it has become incumbent for many countries to invest in wheat production. Improving cropping systems for wheat production is paramount. Intercropping cereals with legumes has tremendous advantages. Therefore, this study was designed to optimize wheat production by intercropping it with soybean at different densities. Between March and August 2023, a randomized complete block design trial was conducted in Bambili, North West of Cameroon with treatments T1 (wheat monocrop at 200,000 plants ha<sup>−</sup><sup>1</sup>), T2 (soybean monocrop at 250,000 plants ha<sup>−</sup><sup>1</sup>), T3 (200,000 wheat and 125,000 soybean ha<sup>−</sup><sup>1</sup>), T4 (100,000 wheat and 250,000 soybean ha<sup>−</sup><sup>1</sup>), T5 (200,000 wheat and 250,000 soybean ha<sup>−</sup><sup>1</sup>) and T6 (100,000 wheat and 125,000 soybean ha<sup>−</sup><sup>1</sup>). Results revealed that growth parameters of wheat were not significantly influenced by monocrop or intercrop. The yield of wheat was significantly higher in the monocrop than the intercrop treatments, with slight variation amongst the intercrop treatments. Soybean yield was higher in the monocrop than in the intercrop, with no variations amongst the intercrop treatments. Only the land equivalence ratio (LER) for T5 was greater than 1.0. The competitive ratio for T5 was 0.54 for wheat and 1.90 for soybean, comparatively lower than the other monocrop treatments. Intercropping wheat and soybean at 200,000:250,000 ratio is recommended.
文摘Dough improvers are substances with functional characteristics used in baking industry to enhance dough properties. Currently, the baking industry is faced with increasing demand for natural ingredients owing to increasing consumer awareness, thus contributing to the rising demand for natural hydrocolloids. Gum Arabic from Acacia senegal var. kerensis is a natural gum exhibiting excellent water binding and emulsification capacity. However, very little is reported on how it affects the rheological properties of wheat dough. The aim of this study was therefore, to determine the rheological properties of wheat dough with partial additions of gum Arabic as an improver. Six treatments were analyzed comprising of: flour-gum blends prepared by adding gum Arabic to wheat flour at different levels (1%, 2% and 3%), plain wheat flour (negative control), commercial bread flour and commercial chapati flour (positive controls). The rheological properties were determined using Brabender Farinograph, Brabender Extensograph and Brabender Viscograph. Results showed that addition of gum Arabic significantly (p chapati. These findings support the need to utilize gum Arabic from Acacia senegal var. kerensis as a dough improver.
文摘Biogasification of coal is important for clean utilization of coal. Experiments on the fermentation of single lignite, single straw and their mixture were performed to explore the variation characteristics of gas production potential, microbial community and methanogenic metabolic pathways of mixture. Research has shown that mixed fermentation of lignite and straw significantly promoted biomethane production. The abundance of hydrolytic acidifying functional bacteria genera (Sphaerochaeta, Lentimicrobium) in mixed fermentation was higher than that in the fermentation of single lignite and single straw. The abundance of some key CAZy metabolic enzyme gene sequences in mixed fermentation group was increased, which was favorable to improve methane production. Aceticlastic methanogenesis was the most critical methanogenic pathway and acetic acid pathway was more competitive in methanogenic mode during peak fermentation. Macrogenomics provided theoretical support for the claim that mixed fermentation of coal and straw promoted biomethane metabolism, which was potentially valuable in expanding methanogenesis from mixed fermentation of lignite with different biomasses.
文摘In the current issue of The Crop Journal,Chen et al.[1]reports map-based cloning of a wheat gene that showed temperaturedependent pleiotropic effects on multiple traits including plant height,leaf shape,spike and grain morphology,and accordingly was named WPA1 for Wheat Plant Architecture 1.The mutant was first observed among EMS-treated plants and repeatedly appeared in multiple occasions.
基金This work was supported by grants from the Natural Science Foundation of Shandong Province,China(ZR2020MC096,ZR2021ZD31,and ZR2020MC151)the Agricultural Variety Improvement Project of Shandong Province,China(2021LZGC013 and 2022LZGC002).
文摘Bread wheat(Triticum aestivum)is a staple food crop worldwide.The genetic dissection of important nutrient traits is essential for the biofortification of wheat to meet the nutritional needs of the world's growing population.Here,45,298 single-nucleotide polymorphisms(SNPs)from 55K chip arrays were used to genotype a panel of 768 wheat cultivars,and a total of 154 quantitative trait loci(QTLs)were detected for eight traits under three environments by genome-wide association study(GWAS).Three QTLs(qMn-3B.1,qFe-3B.4,and qSe-3B.1/qFe-3B.6)detected repeatedly under different environments or traits were subjected to subsequent analyses based on linkage disequilibrium decay and the P-values of significant SNPs.Significant SNPs in the three QTL regions formed six haplotypes for qMn-3B.1,three haplotypes for qFe-3B.4,and three haplotypes for qSe-3B.1/qFe-3B.6.Phenotypic analysis revealed significant differences among haplotypes.These results indicated that the concentrations of several nutrient elements have been modified during the domestication of landraces to modern wheat.Based on the QTL regions,we identified 15 high-confidence genes,eight of which were stably expressed in different tissues and/or developmental stages.TraesCS3B02G046100 in qMn-3B.1 and TraesCS3B02G199500 in qSe-3B.1/qFe-3B.6 were both inferred to interact with metal ions according to the Gene Ontology(GO)analysis.TraesCS3B02G199000,which belongs to qSe-3B.1/qFe-3B.6,was determined to be a member of the WRKY gene family.Overall,this study provides several reliable QTLs that may significantly affect the concentrations of nutrient elements in wheat grain,and this information will facilitate the breeding of wheat cultivars with improved grain properties.
基金supported by the National Key Research and Development Program of China(2019YFC1906700)the Natural Science Foundation of Sichuan,China(2022NSFSC0308).
文摘In order to provide basic design parameters for the industrial pyrolysis process,the transformation behavior of nitrogen was investigated using wheat straw as raw material.The distributions of nitrogen in pyrolysis char,oil,and gas were obtained and the nitrogenous components in the products were analyzed systematically by X-ray photoelectron spectroscopy(XPS),pyrolysis-gas chromatography/mass spectrometry(Py-GC/MS)and thermogravimetric-Fourier transform infrared spectrometry(TG-FTIR).The nitrogen distribution ranges of the pyrolysis char,oil,and gas were 37.34%–54.82%,32.87%–40.94%and 10.20%–28.83%,respectively.More nitrogen was retained in char at lower pyrolysis temperature and the nitrogen distribution of oil was from rise to decline with increasing temperature.The most abundant N-containing compounds in three-phase products were pyrrole-N,amines,and HCN,respectively.In addition,the transformation mechanism of nitrogen from wheat straw to pyrolysis products was concluded.
基金supported by the Youth Fund Project from Beijing Academy of Agricultural and Forestry Sciences China(QNJJ202225)the Germplasm Innovation and New Variety Breeding Project of Beijing China(G20220628002)the Training Programme Foundation for the Beijing Municipal Excellent Talents China(2017000020060G130)。
文摘The use of hybrid wheat is one way to improve the yield in the future.However,greater plant heights increase lodging risk to some extent.In this study,two hybrid combinations with differences in lodging resistance were used to analyze the stem-related traits during the filling stage,and to investigate the mechanism of the difference in lodging resistance by analyzing lignin synthesis of the basal second internode(BSI).The stem-related traits such as the breaking strength,stem pole substantial degree(SPSD),and rind penetration strength(RPS),as well as the lignin content of the lodging-resistant combination(LRC),were significantly higher than those of the lodgingsensitive combination(LSC).The phenylpropanoid biosynthesis pathway was significantly and simultaneously enriched according to the transcriptomics and metabolomics analysis at the later filling stage.A total of 35 critical regulatory genes involved in the phenylpropanoid pathway were identified.Moreover,42%of the identified genes were significantly and differentially expressed at the later grain-filling stage between the two combinations,among which more than 80%were strongly up-regulated at that stage in the LRC compared with LSC.On the contrary,the LRC displayed lower contents of lignin intermediate metabolites than the LSC.These results suggested that the key to the lodging resistance formation of LRC is largely the higher lignin synthesis at the later grain-filling stage.Finally,breeding strategies for synergistically improving plant height and lodging resistance of hybrid wheat were put forward by comparing the LRC with the conventional wheat applied in large areas.
文摘Agriculture is amongst the major occupations in Cameroon where over 70% of citizens are involved and it contributes enormously to the economy of the country. Wheat is one of the most consumed cereals in Cameroon with very high importation rate. However, the adoption of wheat production in the cropping system could have the potential to pull farmers out of poverty. It is essential in human foods and animal feeds. This study aims to investigate on the adaptability of wheat varieties based on growth traits and yield as well as to estimate the gluten content in each of the tested variety in the North-West region. Eight wheat varieties (five from CIMMYT, two from IRAD and one local variety) were evaluated in a factorial design with two types of fertilization (organic and inorganic), in two site (Santa and UBa farm) and five environments. Agro-morphological data were collected and were subjected to the analysis of variance using R software. The gluten content related to the baking quality of wheat flour was estimated per tested variety. Highly significant differences were observed among varieties, sites, environment and fertilization for all parameters estimated. The general mean of all the traits evaluated was significantly higher when using organic fertilizer than inorganic, meaning that the application of organic fertilizer provides better performance of wheat growth. The elevated number of tillers found in Santa could inform on the high level of soil fertility for wheat production in that area. Environment 1 was found to be the best follow by environment 3 and 5. IRAD I gave the highest yield followed by Alexander Wonder and IRAD II. 11SATYND and 29SAWYT were promising introduced varieties in term of grain weight when using organic fertilization. Wet and dry gluten yield varied from 3.8 (ALEXANDER Wonder) to 5.5 (IRAD I) and from 3.7 (IRAD II) to 7.9 (IRAD I) respectively. All the introduced wheat varieties expressed low wet and dry gluten yield as compare to the check Amigo. IRAD I was the best variety to be produced for industrial purposes taken into account the high level of gluten content. IRAD I, 42ESWYTB and IRAD II were found to have their moisture content percentage of flour below that of the check (Amigo) and therefore could be recommended for manufactured foods.
基金the National Natural Science Foundation of China(32071955)the Natural Science Foundation of Shaanxi Province,China(2018JQ3061).
文摘Lodging is still the key factor that limits continuous increases in wheat yields today,because the mechanical strength of culms is reduced due to low-light stress in populations under high-yield cultivation.The mechanical properties of the culm are mainly determined by lignin,which is affected by the light environment.However,little is known about whether the light environment can be sufficiently improved by changing the population distribution to inhibit culm lodging.Therefore,in this study,we used the wheat cultivar“Xinong 979”to establish a low-density homogeneous distribution treatment(LD),high-density homogeneous distribution treatment(HD),and high-density heterogeneous distribution treatment(HD-h)to study the regulatory effects and mechanism responsible for differences in the lodging resistance of wheat culms under different population distributions.Compared with LD,HD significantly reduced the light transmittance in the middle and basal layers of the canopy,the net photosynthetic rate in the middle and lower leaves of plants,the accumulation of lignin in the culm,and the breaking resistance of the culm,and thus the lodging index values increased significantly,with lodging rates of 67.5%in 2020–2021 and 59.3%in 2021–2022.Under HD-h,the light transmittance and other indicators in the middle and basal canopy layers were significantly higher than those under HD,and the lodging index decreased to the point that no lodging occurred.Compared with LD,the activities of phenylalanine ammonia-Lyase(PAL),4-coumarate:coenzyme A ligase(4CL),catechol-O-methyltransferase(COMT),and cinnamyl-alcohol dehydrogenase(CAD)in the lignin synthesis pathway were significantly reduced in the culms under HD during the critical period for culm formation,and the relative expression levels of TaPAL,Ta4CL,TaCOMT,and TaCAD were significantly downregulated.However,the activities of lignin synthesis-related enzymes and their gene expression levels were significantly increased under HD-h compared with HD.A partial least squares path modeling analysis found significant positive effects between the canopy light environment,the photosynthetic capacity of the middle and lower leaves of plants,lignin synthesis and accumulation,and lodging resistance in the culms.Thus,under conventional high-density planting,the risk of wheat lodging was significantly higher.Accordingly,the canopy light environment can be optimized by changing the heterogeneity of the population distribution to improve the photosynthetic capacity of the middle and lower leaves of plants,promote lignin accumulation in the culm,and enhance lodging resistance in wheat.These findings provide a basis for understanding the mechanism responsible for the lower mechanical strength of the culm under high-yield wheat cultivation,and a theoretical basis and for developing technical measures to enhance lodging resistance.
基金supported by the Key Research and Development Program of Shaanxi(2021NY-083)the National Natural Science Foundation of China(31871567).
文摘Low temperatures during germination inhibit seed growth,lead to small and weak seedlings,and significantly reduce the wheat yield.Alleviating the adverse effects of low temperature on wheat seed germination is highly important for achieving high and stable wheat yields.In this study,Tongmai 6(insensitive)and Zhengmai 113(sensitive),which have different low-temperature sensitivities during germination were treated with low temperature during germination.The transcriptome,metabolome and physiological data revealed that low temperature decreased the germination rate,downregulated the expression of a large number of genes involved in regulating glycometabolism,and inhibited carbon,nitrogen(especially amino acids)and energy metabolism in the seeds.Arginine content increased at low temperature,and its increase in the low-temperature-tolerant variety was significantly greater than that in the sensitive variety.Arginine priming experiment showed that treatment with an appropriate concentration of arginine improved the seed germination rate.The conversion of starch to soluble sugar significantly increased under exogenous arginine conditions,the content of key metabolites in energy metabolism increased,and the utilization of ATP in the seeds increased.Taken together,arginine priming increased seed germination at low temperature by relieving inhibition of seed carbon and nitrogen metabolism and improving seed energy metabolism.
基金supported by Project 2662020ZKPY002 supported by the Fundamental Research Funds for the Central Universities.
文摘Vernalization is necessary for winter wheat to flower.However,it is unclear whether vernalization is also required for spring wheat,which is frequently sown in fall,and what molecular mechanisms underlie the vernalization response in wheat varieties.In this study,we examined the molecular mechanisms that regulate vernalization response in winter and spring wheat varieties.For this purpose,we determined how major vernalization genes(VRN1,VRN2,and VRN3)respond to vernalization in these varieties and whether modifications to histones play a role in changes in gene expression.We also identified genes that are differentially regulated in response to vernalization in winter and spring wheat varieties.We found that in winter wheat,but not in spring wheat,VRN1 expression decreases when returned to warm temperature following vernalization.This finding may be associated with differences between spring and winter wheat in the levels of tri-methylation of lysine 27 on histone H3(H3K27me3)and tri-methylation of lysine 4 on histone H3(H3K4me3)at the VRN1 gene.Analysis of winter wheat transcriptomes before and after vernalization revealed that vernalization influences the expression of several genes,including those involved in leucine catabolism,cysteine biosynthesis,and flavonoid biosynthesis.These findings provide new candidates for further study on the mechanism of vernalization regulation in wheat.