With the rapid development of urban agglomerations in northwest arid and semiarid regions of China, the scope of the urban heat island(UHI) effect has gradually expanded and gradually connected, and has formed a regio...With the rapid development of urban agglomerations in northwest arid and semiarid regions of China, the scope of the urban heat island(UHI) effect has gradually expanded and gradually connected, and has formed a regional heat island(RHI) with a larger range of impact to the regional environment. However, there are few studies on the heat island effect of urban agglomerations in arid and semiarid regions, so this paper selects the urban agglomeration of Hohhot, Baotou and Ordos(HBO) of Inner Mongolia, China as the study area. Based on the 8-day composite Moderate-resolution Imaging Spectroradiometer(MODIS) surface temperature data(156scenes in all) and land use maps for 2005, 2010, and 2015, we analyze the spatiotemporal distributions of regional heat(cool) islands(RH(C)I) and the responses of surface temperatures to land-use changes in the diurnal and interannual surface cities. The results showed that: 1) from 2005 to 2015, urban areas showed the cold island effect during the day, with the area of the cold island showing a shrinking feature;at night, they showed the heat island effect, with the area of the heat island showing a first decrease and then an increase.2) From 2005 to 2015, the land development(unutilized land to building land) brings the greatest temperature increase(ΔT = 1.36°C)during the day, while the greatest temperature change at night corresponds to the conversion of cultivated land to building land(ΔT =0.78°C) exhibited the largest changes at night. From 2010 to 2015, the land development(grassland to building land) bring the greatest temperature increase(ΔT = 0.85°C) during the day, while the great temperature change at night corresponds to the conversion of water areas to building land(ΔT = 1.38°C) exhibited the largest changes at night. Exploring the spatial and temporal evolution of surface urban heat(cool) islands in urban agglomerations in arid and semiarid regions will help to understand the urbanization characteristics of urban agglomerations and provide a reference for the formulation of policies for the coordinated and healthy development of the region and co-governance of regional environmental problems.展开更多
With data from the project Collaborative Observation of Semi-arid/Arid Regions in North China, collected during July and September 2008, the spatial patterns of land surface processes over arid and semiarid regions ha...With data from the project Collaborative Observation of Semi-arid/Arid Regions in North China, collected during July and September 2008, the spatial patterns of land surface processes over arid and semiarid regions have been investigated based on the ordinary Kriging interpolation approach. Generally, for the radiation processes, downward and upward short-wave radiation have a uniformly increasing trend with latitude, but the spatial patterns of long-wave radiation present notable regional differences: both upward and downward long-wave radiation increase with latitude in the west of North China, while in the east they vary inversely with latitude, suggesting surface temperature and clouds respectively have feedbacks to the long-wave radiation in the west and east of North China. The surface net radiation basically has a negative latitudinal trend. Long-wave radiation budget plays an important role in the spatial pattern of surface net radiation, particularly in the east of North China, although short-wave radiation budget largely determines the magnitude of surface net radiation. For the energy processes, latent and sensible heat flux varies conversely with latitude: more available land surface energy is consumed by evaporating soil water at lower latitudes while more is used for heating the atmosphere at higher latitudes. A soil heat flux maximum and minimum are found in Loess Plateau and Qinghai Plateau respectively, and a maximum is seen in the northeast China.展开更多
In recent years, with the constant change in the global climate, the effect of climate factors on net primary productivity(NPP) has become a hot research topic. However, two opposing views have been presented in this ...In recent years, with the constant change in the global climate, the effect of climate factors on net primary productivity(NPP) has become a hot research topic. However, two opposing views have been presented in this research area: global NPP increases with global warming, and global NPP decreases with global warming. The main reasons for these two opposite results are the tremendous differences among seasonal and annual climate variables, and the growth of plants in accordance with these climate variables. Therefore, it will fail to fully clarify the relation between vegetation growth and climate changes by research that relies solely on annual data. With seasonal climate variables, we may clarify the relation between vegetation growth and climate changes more accurately. Our research examined the arid and semiarid areas in China(ASAC), which account for one quarter of the total area of China. The ecological environment of these areas is fragile and easily affected by human activities. We analyzed the influence of climate changes, especially the changes in seasonal climate variables, on NPP, with Climatic Research Unit(CRU) climatic data and Moderate Resolution Imaging Spectroradiometer(MODIS) satellite remote data, for the years 2000–2010. The results indicate that: for annual climatic data, the percentage of the ASAC in which NPP is positively correlated with temperature is 66.11%, and 91.47% of the ASAC demonstrates a positive correlation between NPP and precipitation. Precipitation is more positively correlated with NPP than temperature in the ASAC. For seasonal climatic data, the correlation between NPP and spring temperature shows significant regional differences. Positive correlation areas are concentrated in the eastern portion of the ASAC, while the western section of the ASAC generally shows a negative correlation. However, in summer, most areas in the ASAC show a negative correlation between NPP and temperature. In autumn, precipitation is less important in the west, as opposed to the east, in which it is critically important. Temperatures in winter are a limiting factor for NPP throughout the region. The findings of this research not only underline the importance of seasonal climate variables for vegetation growth, but also suggest that the effects of seasonal climate variables on NPP should be explored further in related research in the future.展开更多
Understanding the spatio-temporal variations of temperature and precipitation in the arid and semiarid region of China(ASRC)is of great significance for promoting regional eco-environmental protection and policy-makin...Understanding the spatio-temporal variations of temperature and precipitation in the arid and semiarid region of China(ASRC)is of great significance for promoting regional eco-environmental protection and policy-making.In this study,the annual and seasonal spatio-temporal patterns of change in average temperature and precipitation and their influencing factors in the ASRC were analyzed using the Mann-Kendall test,linear tendency estimation,accumulative anomaly and the Pearson’s correlation coefficient.The results showed that both annual average temperature and average annual precipitation increased in the ASRC during 1951–2019.The temperature rose by about 1.93℃and precipitation increased by about 24 mm.The seasonal average temperature presented a significant increase trend,and the seasonal precipitation was conspicuous ascension in spring and winter.The spatio-temporal patterns of change in temperature and precipitation differed,with the southwest area showing the most obvious variation in each season.Abrupt changes in annual and seasonal average temperature and precipitation occurred mainly around the 1990 s and after 2000,respectively.Atmospheric circulation had an important effect on the trends and abrupt changes in temperature and precipitation.The East Asian summer monsoon had the largest impact on the trend of average annual temperature,as well as on the abrupt changes of annual average temperature and precipitation.Temperature and precipitation changes in the ASRC were influenced by long-term and short-term as well as direct and indirect anthropogenic and natural factors.This study identifies the characteristics of spatio-temporal variations in temperature and precipitation in the ASRC and provides a scientific reference for the formulation of climate change responses.展开更多
Dustfall collections were carried out in April and May 2001 and in March 2002 at six sites in northern China.Our results showed that the total deposition of dust fractions 【250 μm in diameter and the deposition of F...Dustfall collections were carried out in April and May 2001 and in March 2002 at six sites in northern China.Our results showed that the total deposition of dust fractions 【250 μm in diameter and the deposition of Fe both decreased exponentially with increasing distances from the source areas,and that the half-attenuation distance (HAD) for dust deposition was about 229 km in this re-gion.The HAD was closely related to the grain-size distribution of the dust,and the 15 to 20 μm fractions had the longest HAD.However,the fractions 【15 μm in diameter can be easily adsorbed to coarse particles and deposited after only short distances,and the HAD for the fractions 15 to 100 μm in diameter showed a power relationship with the grain-size distribution.The HAD for Fe deposition was 233 km,which was a little longer than that of total dust deposition,which suggests that the Fe content is higher in fine particles than in coarse particles,as previous studies have suggested.In addition,our analysis showed that under the control of current climatic conditions,the coarse fractions in dust derived from northwestern China cannot be transported over long distances,instead,it is transported primarily by near-surface winds (【3 km above the ground).The Fe in aeolian dust generated from arid and semiarid regions of China and deposited in the North Pacific region is usually transported by the upper westerlies.展开更多
The authors present a case study investigating the impacts of dust aerosols on surface atmospheric variables and energy budgets in a semi-arid region of China. Enhanced observational meteorological data, radiative flu...The authors present a case study investigating the impacts of dust aerosols on surface atmospheric variables and energy budgets in a semi-arid region of China. Enhanced observational meteorological data, radiative fluxes, near-surface heat fluxes, and concentrations of dust aerosols were collected from Tongyu station, one of the reference sites of the International Coordinated Energy and Water Cycle Observations Project (CEOP), during a typical dust storm event in June 2006. A comprehensive analysis of these data show that in this semi-arid area, higher wind velocities and a continuously reduced air pressure were identified during the dust storm period. Dust storm events are usually associated with low relative humidity weather conditions, which result in low latent heat flux values. Dust aerosols suspended in the air decrease the net radiation, mainly by reducing the direct solar radiation reaching the land surface. This reduction in net radiation results in a decrease in soil temperatures at a depth of 2 cm. The combination of increased air temperature and decreased soil temperature strengthens the energy exchange of the atmosphere-earth system, increasing the surface sensible heat flux. After the dust storm event, the atmosphere was dominated by higher pressures and was relatively wet and cold. Net radiation and latent heat flux show an evident increase, while the surface sensible heat flux shows a clear decrease.展开更多
Rapid urbanization has occurred in arid/semiarid China,threatening the sustainability of fragile dryland ecosystems;however,our knowledge of natural environmental constraints on multiscale urban lands in this region i...Rapid urbanization has occurred in arid/semiarid China,threatening the sustainability of fragile dryland ecosystems;however,our knowledge of natural environmental constraints on multiscale urban lands in this region is still lacking.To solve this issue,this study retrieved 15-m multiscale urban lands.Results indicated that urban area increased by 68%during 2000–2018,and one-third of the increase was contributed by only three large cities.The coverage of impervious surface area(ISA) and vegetated area(VA) increased by 16.6%and 1.38%,respectively.Such land-cover change may be helpful in suppressing wind erosion and sand storms.We also found that the newly urban lands had relatively lower ISA and higher VA than the old urban lands,indicating an improved human settlement environment.Strong environmental constraints on urban expansion were identified,with cities in oasis urban environments(OUEs) that had water supply expanding 150% faster than cities in desert urban environments(DUEs).Urban development was also constrained by terrain,with 73% of the ISA expansion occurring in relatively flat areas.Overall,the aggregated pattern of urbanization and the increase in ISA and VA in the newly urbanized lands have improved water-use efficiency and ecological services and benefited desert ecosystem protection in arid/semiarid China.展开更多
文摘With the rapid development of urban agglomerations in northwest arid and semiarid regions of China, the scope of the urban heat island(UHI) effect has gradually expanded and gradually connected, and has formed a regional heat island(RHI) with a larger range of impact to the regional environment. However, there are few studies on the heat island effect of urban agglomerations in arid and semiarid regions, so this paper selects the urban agglomeration of Hohhot, Baotou and Ordos(HBO) of Inner Mongolia, China as the study area. Based on the 8-day composite Moderate-resolution Imaging Spectroradiometer(MODIS) surface temperature data(156scenes in all) and land use maps for 2005, 2010, and 2015, we analyze the spatiotemporal distributions of regional heat(cool) islands(RH(C)I) and the responses of surface temperatures to land-use changes in the diurnal and interannual surface cities. The results showed that: 1) from 2005 to 2015, urban areas showed the cold island effect during the day, with the area of the cold island showing a shrinking feature;at night, they showed the heat island effect, with the area of the heat island showing a first decrease and then an increase.2) From 2005 to 2015, the land development(unutilized land to building land) brings the greatest temperature increase(ΔT = 1.36°C)during the day, while the greatest temperature change at night corresponds to the conversion of cultivated land to building land(ΔT =0.78°C) exhibited the largest changes at night. From 2010 to 2015, the land development(grassland to building land) bring the greatest temperature increase(ΔT = 0.85°C) during the day, while the great temperature change at night corresponds to the conversion of water areas to building land(ΔT = 1.38°C) exhibited the largest changes at night. Exploring the spatial and temporal evolution of surface urban heat(cool) islands in urban agglomerations in arid and semiarid regions will help to understand the urbanization characteristics of urban agglomerations and provide a reference for the formulation of policies for the coordinated and healthy development of the region and co-governance of regional environmental problems.
基金supported by the State Key Program of National Natural Science of China (Grant No. 40830957)
文摘With data from the project Collaborative Observation of Semi-arid/Arid Regions in North China, collected during July and September 2008, the spatial patterns of land surface processes over arid and semiarid regions have been investigated based on the ordinary Kriging interpolation approach. Generally, for the radiation processes, downward and upward short-wave radiation have a uniformly increasing trend with latitude, but the spatial patterns of long-wave radiation present notable regional differences: both upward and downward long-wave radiation increase with latitude in the west of North China, while in the east they vary inversely with latitude, suggesting surface temperature and clouds respectively have feedbacks to the long-wave radiation in the west and east of North China. The surface net radiation basically has a negative latitudinal trend. Long-wave radiation budget plays an important role in the spatial pattern of surface net radiation, particularly in the east of North China, although short-wave radiation budget largely determines the magnitude of surface net radiation. For the energy processes, latent and sensible heat flux varies conversely with latitude: more available land surface energy is consumed by evaporating soil water at lower latitudes while more is used for heating the atmosphere at higher latitudes. A soil heat flux maximum and minimum are found in Loess Plateau and Qinghai Plateau respectively, and a maximum is seen in the northeast China.
基金the Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues of Chinese Academy of Sciences(No.XDA05060104)
文摘In recent years, with the constant change in the global climate, the effect of climate factors on net primary productivity(NPP) has become a hot research topic. However, two opposing views have been presented in this research area: global NPP increases with global warming, and global NPP decreases with global warming. The main reasons for these two opposite results are the tremendous differences among seasonal and annual climate variables, and the growth of plants in accordance with these climate variables. Therefore, it will fail to fully clarify the relation between vegetation growth and climate changes by research that relies solely on annual data. With seasonal climate variables, we may clarify the relation between vegetation growth and climate changes more accurately. Our research examined the arid and semiarid areas in China(ASAC), which account for one quarter of the total area of China. The ecological environment of these areas is fragile and easily affected by human activities. We analyzed the influence of climate changes, especially the changes in seasonal climate variables, on NPP, with Climatic Research Unit(CRU) climatic data and Moderate Resolution Imaging Spectroradiometer(MODIS) satellite remote data, for the years 2000–2010. The results indicate that: for annual climatic data, the percentage of the ASAC in which NPP is positively correlated with temperature is 66.11%, and 91.47% of the ASAC demonstrates a positive correlation between NPP and precipitation. Precipitation is more positively correlated with NPP than temperature in the ASAC. For seasonal climatic data, the correlation between NPP and spring temperature shows significant regional differences. Positive correlation areas are concentrated in the eastern portion of the ASAC, while the western section of the ASAC generally shows a negative correlation. However, in summer, most areas in the ASAC show a negative correlation between NPP and temperature. In autumn, precipitation is less important in the west, as opposed to the east, in which it is critically important. Temperatures in winter are a limiting factor for NPP throughout the region. The findings of this research not only underline the importance of seasonal climate variables for vegetation growth, but also suggest that the effects of seasonal climate variables on NPP should be explored further in related research in the future.
基金Under the auspices of Fujian Natural Science Foundation General Program(No.2020J01572)the Scientific Research Project on Outstanding Young of the Fujian Agriculture and Forestry University(No.XJQ201920)。
文摘Understanding the spatio-temporal variations of temperature and precipitation in the arid and semiarid region of China(ASRC)is of great significance for promoting regional eco-environmental protection and policy-making.In this study,the annual and seasonal spatio-temporal patterns of change in average temperature and precipitation and their influencing factors in the ASRC were analyzed using the Mann-Kendall test,linear tendency estimation,accumulative anomaly and the Pearson’s correlation coefficient.The results showed that both annual average temperature and average annual precipitation increased in the ASRC during 1951–2019.The temperature rose by about 1.93℃and precipitation increased by about 24 mm.The seasonal average temperature presented a significant increase trend,and the seasonal precipitation was conspicuous ascension in spring and winter.The spatio-temporal patterns of change in temperature and precipitation differed,with the southwest area showing the most obvious variation in each season.Abrupt changes in annual and seasonal average temperature and precipitation occurred mainly around the 1990 s and after 2000,respectively.Atmospheric circulation had an important effect on the trends and abrupt changes in temperature and precipitation.The East Asian summer monsoon had the largest impact on the trend of average annual temperature,as well as on the abrupt changes of annual average temperature and precipitation.Temperature and precipitation changes in the ASRC were influenced by long-term and short-term as well as direct and indirect anthropogenic and natural factors.This study identifies the characteristics of spatio-temporal variations in temperature and precipitation in the ASRC and provides a scientific reference for the formulation of climate change responses.
基金funding from the Natural Science Foundation of China through Grant No. 40638038
文摘Dustfall collections were carried out in April and May 2001 and in March 2002 at six sites in northern China.Our results showed that the total deposition of dust fractions 【250 μm in diameter and the deposition of Fe both decreased exponentially with increasing distances from the source areas,and that the half-attenuation distance (HAD) for dust deposition was about 229 km in this re-gion.The HAD was closely related to the grain-size distribution of the dust,and the 15 to 20 μm fractions had the longest HAD.However,the fractions 【15 μm in diameter can be easily adsorbed to coarse particles and deposited after only short distances,and the HAD for the fractions 15 to 100 μm in diameter showed a power relationship with the grain-size distribution.The HAD for Fe deposition was 233 km,which was a little longer than that of total dust deposition,which suggests that the Fe content is higher in fine particles than in coarse particles,as previous studies have suggested.In addition,our analysis showed that under the control of current climatic conditions,the coarse fractions in dust derived from northwestern China cannot be transported over long distances,instead,it is transported primarily by near-surface winds (【3 km above the ground).The Fe in aeolian dust generated from arid and semiarid regions of China and deposited in the North Pacific region is usually transported by the upper westerlies.
基金supported by funds from the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No.KZCX2-YW-Q11-03)the National Basic Research Program of China (Grant No.2006CB400501)
文摘The authors present a case study investigating the impacts of dust aerosols on surface atmospheric variables and energy budgets in a semi-arid region of China. Enhanced observational meteorological data, radiative fluxes, near-surface heat fluxes, and concentrations of dust aerosols were collected from Tongyu station, one of the reference sites of the International Coordinated Energy and Water Cycle Observations Project (CEOP), during a typical dust storm event in June 2006. A comprehensive analysis of these data show that in this semi-arid area, higher wind velocities and a continuously reduced air pressure were identified during the dust storm period. Dust storm events are usually associated with low relative humidity weather conditions, which result in low latent heat flux values. Dust aerosols suspended in the air decrease the net radiation, mainly by reducing the direct solar radiation reaching the land surface. This reduction in net radiation results in a decrease in soil temperatures at a depth of 2 cm. The combination of increased air temperature and decreased soil temperature strengthens the energy exchange of the atmosphere-earth system, increasing the surface sensible heat flux. After the dust storm event, the atmosphere was dominated by higher pressures and was relatively wet and cold. Net radiation and latent heat flux show an evident increase, while the surface sensible heat flux shows a clear decrease.
基金Natural Science Foundation Youth Program of Shandong Province,No.ZR2021QD134Humanity and Social Science Youth Foundation of the Ministry of Education of China,No.21YJCZH111National Natural Science Foundation of China,No.31770515。
文摘Rapid urbanization has occurred in arid/semiarid China,threatening the sustainability of fragile dryland ecosystems;however,our knowledge of natural environmental constraints on multiscale urban lands in this region is still lacking.To solve this issue,this study retrieved 15-m multiscale urban lands.Results indicated that urban area increased by 68%during 2000–2018,and one-third of the increase was contributed by only three large cities.The coverage of impervious surface area(ISA) and vegetated area(VA) increased by 16.6%and 1.38%,respectively.Such land-cover change may be helpful in suppressing wind erosion and sand storms.We also found that the newly urban lands had relatively lower ISA and higher VA than the old urban lands,indicating an improved human settlement environment.Strong environmental constraints on urban expansion were identified,with cities in oasis urban environments(OUEs) that had water supply expanding 150% faster than cities in desert urban environments(DUEs).Urban development was also constrained by terrain,with 73% of the ISA expansion occurring in relatively flat areas.Overall,the aggregated pattern of urbanization and the increase in ISA and VA in the newly urbanized lands have improved water-use efficiency and ecological services and benefited desert ecosystem protection in arid/semiarid China.