期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
(g,e)-Symmetric Rings
1
作者 Fanyun Meng Junchao Wei Nanqing Ding 《Algebra Colloquium》 SCIE CSCD 2024年第2期263-270,共8页
Let R be a ring and e,g in E(R),the set of idempotents of R.Then R is called(g,e)-symmetric if abc=0 implies gacbe=0 for any a,b,c∈R.Clearly,R is an e-symmetric ring if and only if R is a(1,e)-symmetric ring;in parti... Let R be a ring and e,g in E(R),the set of idempotents of R.Then R is called(g,e)-symmetric if abc=0 implies gacbe=0 for any a,b,c∈R.Clearly,R is an e-symmetric ring if and only if R is a(1,e)-symmetric ring;in particular,R is a symmetric ring if and only if R is a(1,1)-symmetric ring.We show that e∈E(R)is left semicentral if and only if R is a(1−e,e)-symmetric ring;in particular,R is an Abel ring if and only if R is a(1−e,e)-symmetric ring for each e∈E(R).We also show that R is(g,e)-symmetric if and only if ge∈E(R),geRge is symmetric,and gxye=gxeye=gxgye for any x,y∈R.Using e-symmetric rings,we construct some new classes of rings. 展开更多
关键词 IDEMPOTENT (g e)-symmetric ring Abel ring left semicentral
原文传递
Principally Quasi-Baer Modules 被引量:3
2
作者 LIU Qiong OUYANG Bai Yu WU Tong Suo 《Journal of Mathematical Research and Exposition》 CSCD 2009年第5期823-830,共8页
In this paper,we give the equivalent characterizations of principally quasi-Baer modules,and show that any direct summand of a principally quasi-Baer module inherits the property and any finite direct sum of mutually ... In this paper,we give the equivalent characterizations of principally quasi-Baer modules,and show that any direct summand of a principally quasi-Baer module inherits the property and any finite direct sum of mutually subisomorphic principally quasi-Baer modules is also principally quasi-Baer.Moreover,we prove that left principally quasi-Baer rings have Morita invariant property.Connections between Richart modules and principally quasi-Baer modules are investigated. 展开更多
关键词 principally quasi-Baer rings (modules) endomorphism rings ANNIHILATORS semicentral idempotents.
下载PDF
Principal Quasi-Baerness of Formal Power Series Rings
3
作者 Zhong Kui LIU Wen Hui ZHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第11期2231-2238,共8页
Let R be a ring. We consider left (or right) principal quasi-Baerness of the left skew formal power series ring R[[x;α]] over R where a is a ring automorphism of R. We give a necessary and sufficient condition unde... Let R be a ring. We consider left (or right) principal quasi-Baerness of the left skew formal power series ring R[[x;α]] over R where a is a ring automorphism of R. We give a necessary and sufficient condition under which the ring R[[x; α]] is left (or right) principally quasi-Baer. As an application we show that R[[x]] is left principally quasi-Baer if and only if R is left principally quasi- Baer and the left annihilator of the left ideal generated by any countable family of idempotents in R is generated by an idempotent. 展开更多
关键词 Left principally quasi-Baer ring skew power series ring right semicentral idempotent
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部