Chemoautotrophic organisms have once been excluded from the development of universally applicable CO2 fixation technology due to its low production yields of biomass. In this study, we used Acidithiobacillusferrooxida...Chemoautotrophic organisms have once been excluded from the development of universally applicable CO2 fixation technology due to its low production yields of biomass. In this study, we used Acidithiobacillusferrooxidans (A.f.) as a model chemoautotrophic microorganism to test the hypothesis that exogenetic photoelectrons from semiconducting mineral photocatalysis can enable the regeneration of Fe^2+ that could be then used by A.f. and support its growth. In a simulated electrochemical system, where exogenetic electrons were provided by an electrochemical approach, an accelerated growth rate of A.f. was observed as compared with that in traditional batch cultivation. In a coupled system, where light-irradiated natural rutile provided the primary electron source to feed A.f., the bacterial growth rate as well as the subsequent CO2 fixation rate was demonstrated to be in a light-dependent manner. The sustaining flow of photogenerated electrons from semiconducting mineral to bacteria provided an inexhaustible electron source for chemoautotrophic bacteria growth and CO2 fixation. This finding might contribute to the development of novel effective CO2 fixation technology.展开更多
Energy is the key issue of all life activities.The energy source and energy yielding pathway are the key scientific issues of the origin and early evolution of life on Earth.Current researches indicate that the utiliz...Energy is the key issue of all life activities.The energy source and energy yielding pathway are the key scientific issues of the origin and early evolution of life on Earth.Current researches indicate that the utilization of solar energy in large scale by life was an important breaking point of the early evolution of life on Earth and afterwards life gradually developed and flourished.However,in the widespread biochemical electron transfer of life activities,it is still not clear whether the electron source is sun or how electrons originated from sun.For billions of years,the ubiquitous semiconducting minerals in epigeosphere absorb solar energy,forming photoelectrons and photoholes.In reductive and weak acidic environment of early Earth,when photoholes were easily scavenged by reducing matters,photoelectrons were separated.Photoelectrons could effectively reduce carbon dioxide to organic matters,possibly providing organic matter foundation for the origin of life.Photoelectrons participated in photoelectron transfer chains driven by potential difference and transfer into primitive cells to maintain metabolisms.Semiconducting minerals,by absorbing ultraviolet,also protected primitive cells from being damaged by ultraviolet in the origin of life.Due to the continuous photoelectrons generation in semiconducting minerals and utilization by primitive cells,photoelectrons from semiconducting minerals’photocatalysis played multiple roles in the origin of life on early Earth,such as organic synthesis,cell protection,and energy supply.This mechanism still plays important roles in modern Earth surface systems.展开更多
基金supported by the Key Project of the National Natural Science Foundation of China (Grant No. 41230103)the National Natural Science Foundation of China (Grant No. 41272003)
文摘Chemoautotrophic organisms have once been excluded from the development of universally applicable CO2 fixation technology due to its low production yields of biomass. In this study, we used Acidithiobacillusferrooxidans (A.f.) as a model chemoautotrophic microorganism to test the hypothesis that exogenetic photoelectrons from semiconducting mineral photocatalysis can enable the regeneration of Fe^2+ that could be then used by A.f. and support its growth. In a simulated electrochemical system, where exogenetic electrons were provided by an electrochemical approach, an accelerated growth rate of A.f. was observed as compared with that in traditional batch cultivation. In a coupled system, where light-irradiated natural rutile provided the primary electron source to feed A.f., the bacterial growth rate as well as the subsequent CO2 fixation rate was demonstrated to be in a light-dependent manner. The sustaining flow of photogenerated electrons from semiconducting mineral to bacteria provided an inexhaustible electron source for chemoautotrophic bacteria growth and CO2 fixation. This finding might contribute to the development of novel effective CO2 fixation technology.
基金supported by National Natural Science Foundation of China(Grant No.41230103)National Basic Research Program of China(Grant No.2014CB846001)
文摘Energy is the key issue of all life activities.The energy source and energy yielding pathway are the key scientific issues of the origin and early evolution of life on Earth.Current researches indicate that the utilization of solar energy in large scale by life was an important breaking point of the early evolution of life on Earth and afterwards life gradually developed and flourished.However,in the widespread biochemical electron transfer of life activities,it is still not clear whether the electron source is sun or how electrons originated from sun.For billions of years,the ubiquitous semiconducting minerals in epigeosphere absorb solar energy,forming photoelectrons and photoholes.In reductive and weak acidic environment of early Earth,when photoholes were easily scavenged by reducing matters,photoelectrons were separated.Photoelectrons could effectively reduce carbon dioxide to organic matters,possibly providing organic matter foundation for the origin of life.Photoelectrons participated in photoelectron transfer chains driven by potential difference and transfer into primitive cells to maintain metabolisms.Semiconducting minerals,by absorbing ultraviolet,also protected primitive cells from being damaged by ultraviolet in the origin of life.Due to the continuous photoelectrons generation in semiconducting minerals and utilization by primitive cells,photoelectrons from semiconducting minerals’photocatalysis played multiple roles in the origin of life on early Earth,such as organic synthesis,cell protection,and energy supply.This mechanism still plays important roles in modern Earth surface systems.