Epi-up and epi-down bonding of high power 980nm lasers have been studied in terms of bonding process, thermal behavior, optical performances, thermal stress effects and long-term laser reliability. We demonstrated tha...Epi-up and epi-down bonding of high power 980nm lasers have been studied in terms of bonding process, thermal behavior, optical performances, thermal stress effects and long-term laser reliability. We demonstrated that epi-down bonding can offer lower thermal resistance and improved optical performances without significantly degrading the long-term laser reliability.展开更多
The characteristics of low frequency electrical noise, voltage current ( V I ) and electrical derivation for 980 nm InGaAsP/InGaAs/GaAs high power double quantum well lasers(DQWLs) are measured under different conditi...The characteristics of low frequency electrical noise, voltage current ( V I ) and electrical derivation for 980 nm InGaAsP/InGaAs/GaAs high power double quantum well lasers(DQWLs) are measured under different conditions. The correlation of the low frequency electrical noise with surface non radiative current of devices is discussed. The results indicate the low frequency electrical noise of 980 nm DQWLs with high power is mainly 1/ f noise and has good relation with the device surface current at low injection.展开更多
The optical catastrophic damage that usually occurs at the cavity surface of semiconductor lasers has become the main bottleneck affecting the improvement of laser output power and long-term reliability.To improve the...The optical catastrophic damage that usually occurs at the cavity surface of semiconductor lasers has become the main bottleneck affecting the improvement of laser output power and long-term reliability.To improve the output power of 680 nm AlGaInP/GaInP quantum well red semiconductor lasers,Si-Si_(3)N_(4)composited dielectric layers are used to induce its quantum wells to be intermixed at the cavity surface to make a non-absorption window.Si with a thickness of 100 nm and Si_(3)N_(4)with a thickness of 100 nm were grown on the surface of the epitaxial wafer by magnetron sputtering and PECVD as diffusion source and driving source,respectively.Compared with traditional Si impurity induced quantum well intermixing,this paper realizes the blue shift of 54.8 nm in the nonabsorbent window region at a lower annealing temperature of 600 ℃ and annealing time of 10 min.Under this annealing condition,the wavelength of the gain luminescence region basically does not shift to short wavelength,and the surface morphology of the whole epitaxial wafer remains fine after annealing.The application of this process condition can reduce the difficulty of production and save cost,which provides an effective method for upcoming fabrication.展开更多
In order to improve the characteristics of the general broad-waveguide 808-nm semiconductor laser diode (LD), we design a new type quantum well LD with an asymmetric cladding structure. The structure is grown by met...In order to improve the characteristics of the general broad-waveguide 808-nm semiconductor laser diode (LD), we design a new type quantum well LD with an asymmetric cladding structure. The structure is grown by metal organic chemical vapor deposition (MOCVD). For the devices with 100-ttm-wide stripe and 1000-/zm-long cavity under continuous-wave (CW) operation condition, the typical threshold current is 190 mA, the slope efficiency is 1.31 W/A, the wall-plug efficiency reaches 63%, and the maximum output power reaches higher than 7 W. And the internal absorption value decreases to 1.5 cm^-1.展开更多
The semiconductor laser array with single-mode emission is presented in this paper.The 6-μm-wide ridge waveguides(RWGs)are fabricated to select the lateral mode.Thus the fundamental mode of laser array can be obtaine...The semiconductor laser array with single-mode emission is presented in this paper.The 6-μm-wide ridge waveguides(RWGs)are fabricated to select the lateral mode.Thus the fundamental mode of laser array can be obtained by the RWGs.And the maximum output power of single-mode emission can reach 36 W at an injection current of 43 A,after that,a kink will appear.The slow axis(SA)far-field divergence angle of the unit is 13.65.The beam quality factor M;of the units determined by the second-order moment(SOM)method,is 1.2.This single-mode emission laser array can be used for laser processing.展开更多
A very highly efficient InGaAlAs/AlGaAs quantum-well structure was designed for 808 nm emission,and laser diode chips 390-μm-wide aperture and 2-mm-long cavity length were fabricated.Special pretreatment and passivat...A very highly efficient InGaAlAs/AlGaAs quantum-well structure was designed for 808 nm emission,and laser diode chips 390-μm-wide aperture and 2-mm-long cavity length were fabricated.Special pretreatment and passivation for the chip facets were performed to achieve improved reliability performance.The laser chips were p-side-down mounted on the AlN submount,and then tested at continuous wave(CW)operation with the heat-sink temperature setting to 25℃using a thermoelectric cooler(TEC).As high as 60.5%of the wall-plug efficiency(WPE)was achieved at the injection current of 11 A.The maximum output power of 30.1 W was obtained at 29.5 A when the TEC temperature was set to 12°C.Accelerated life-time test showed that the laser diodes had lifetimes of over 62111 h operating at rated power of 10 W.展开更多
Based on the high-speed development of the fiber laser in recent years, the development of researching 915 nm semiconductor laser as main pumping sources of the fiber laser is at a high speed. Because the beam quality...Based on the high-speed development of the fiber laser in recent years, the development of researching 915 nm semiconductor laser as main pumping sources of the fiber laser is at a high speed. Because the beam quality of the laser diode is very poor, the 915 nm laser diode is generally based on optical fiber coupling module to output the laser. Using the beam-shaping and fiber-coupling technology to improve the quality of output beam light, we present a kind of high-power and high-brightness semiconductor laser module, which can output 13.22 W through the optical fiber. Based on 915 nm GaAs semiconductor laser diode which has output power of 13.91 W, we describe a thoroughly detailed procedure for reshaping the beam output from the semiconductor laser diode and coupling the beam into the optical fiber of which the core diameter is 105 μm and the numerical aperture is 0.18. We get 13.22 W from the output fiber of the module at 14.5 A, the coupling efficiency of the whole module is 95.03% and the brightness is 1.5 MW/cm2-str. The output power of the single chip semiconductor laser module achieves the advanced level in the domestic use.展开更多
The high power and low internal loss 1.06 μm InGaAs/GaAsP quantum well lasers with asymmetric waveguide structure were designed and fabricated. For a 4000 μm cavity length and 100 μm stripe width device,the maximum...The high power and low internal loss 1.06 μm InGaAs/GaAsP quantum well lasers with asymmetric waveguide structure were designed and fabricated. For a 4000 μm cavity length and 100 μm stripe width device,the maximum output power and conversion efficiency of the device are 7.13 W and 56.4%, respectively. The cavity length dependence of the threshold current density and conversion efficiency have been investigated theoretically and experimentally; the laser diode with 4000 μm cavity length shows better characteristics than that with 3000 and 4500 μm cavity length: the threshold current density is 132.5 A/cm^2, the slope efficiency of 1.00 W/A and the junction temperature of 15.62 K were achieved.展开更多
文摘Epi-up and epi-down bonding of high power 980nm lasers have been studied in terms of bonding process, thermal behavior, optical performances, thermal stress effects and long-term laser reliability. We demonstrated that epi-down bonding can offer lower thermal resistance and improved optical performances without significantly degrading the long-term laser reliability.
文摘The characteristics of low frequency electrical noise, voltage current ( V I ) and electrical derivation for 980 nm InGaAsP/InGaAs/GaAs high power double quantum well lasers(DQWLs) are measured under different conditions. The correlation of the low frequency electrical noise with surface non radiative current of devices is discussed. The results indicate the low frequency electrical noise of 980 nm DQWLs with high power is mainly 1/ f noise and has good relation with the device surface current at low injection.
基金supported by the National Natural Science Foundation of China(NNSFC)(Grant No.62174154).
文摘The optical catastrophic damage that usually occurs at the cavity surface of semiconductor lasers has become the main bottleneck affecting the improvement of laser output power and long-term reliability.To improve the output power of 680 nm AlGaInP/GaInP quantum well red semiconductor lasers,Si-Si_(3)N_(4)composited dielectric layers are used to induce its quantum wells to be intermixed at the cavity surface to make a non-absorption window.Si with a thickness of 100 nm and Si_(3)N_(4)with a thickness of 100 nm were grown on the surface of the epitaxial wafer by magnetron sputtering and PECVD as diffusion source and driving source,respectively.Compared with traditional Si impurity induced quantum well intermixing,this paper realizes the blue shift of 54.8 nm in the nonabsorbent window region at a lower annealing temperature of 600 ℃ and annealing time of 10 min.Under this annealing condition,the wavelength of the gain luminescence region basically does not shift to short wavelength,and the surface morphology of the whole epitaxial wafer remains fine after annealing.The application of this process condition can reduce the difficulty of production and save cost,which provides an effective method for upcoming fabrication.
基金supported by the National Natural Science Foundation of China (No.50472068)the Program for New Century Excellent Talents in University
文摘In order to improve the characteristics of the general broad-waveguide 808-nm semiconductor laser diode (LD), we design a new type quantum well LD with an asymmetric cladding structure. The structure is grown by metal organic chemical vapor deposition (MOCVD). For the devices with 100-ttm-wide stripe and 1000-/zm-long cavity under continuous-wave (CW) operation condition, the typical threshold current is 190 mA, the slope efficiency is 1.31 W/A, the wall-plug efficiency reaches 63%, and the maximum output power reaches higher than 7 W. And the internal absorption value decreases to 1.5 cm^-1.
基金Project supported by the National Science and Technology Major Project of China(Grant Nos.2018YFB0504600and 2017YFB0405102)the Frontier Science Key Program of the President of the Chinese Academy of Sciences(Grant No.QYZDY-SSW-JSC006)+7 种基金the Pilot Project of the Chinese Academy of Sciences(Grant No.XDB43030302)the National Natural Science Foundation of China(Grant Nos.62090051,62090052,62090054,11874353,61935009,61934003,61904179,61727822,61805236,62004194,and 61991433)the Science and Technology Development Project of Jilin Province,China(Grant Nos.20200401062GX,202001069GX,20200501006GX,20200501007GX,20200501008GX,and 20190302042GX)the Key Research and Development Project of Guangdong Province,China(Grant No.2020B090922003)the Equipment Pre-researchChina(Grant No.2006ZYGG0304)the Special Scientific Research Project of the Academician Innovation Platform in Hainan Province,China(Grant No.YSPTZX202034)the Dawn Talent Training Program of CIOMP,China。
文摘The semiconductor laser array with single-mode emission is presented in this paper.The 6-μm-wide ridge waveguides(RWGs)are fabricated to select the lateral mode.Thus the fundamental mode of laser array can be obtained by the RWGs.And the maximum output power of single-mode emission can reach 36 W at an injection current of 43 A,after that,a kink will appear.The slow axis(SA)far-field divergence angle of the unit is 13.65.The beam quality factor M;of the units determined by the second-order moment(SOM)method,is 1.2.This single-mode emission laser array can be used for laser processing.
基金supported by the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2018GY-005, No. 2017GY-065, No. 2017KJXX-72)
文摘A very highly efficient InGaAlAs/AlGaAs quantum-well structure was designed for 808 nm emission,and laser diode chips 390-μm-wide aperture and 2-mm-long cavity length were fabricated.Special pretreatment and passivation for the chip facets were performed to achieve improved reliability performance.The laser chips were p-side-down mounted on the AlN submount,and then tested at continuous wave(CW)operation with the heat-sink temperature setting to 25℃using a thermoelectric cooler(TEC).As high as 60.5%of the wall-plug efficiency(WPE)was achieved at the injection current of 11 A.The maximum output power of 30.1 W was obtained at 29.5 A when the TEC temperature was set to 12°C.Accelerated life-time test showed that the laser diodes had lifetimes of over 62111 h operating at rated power of 10 W.
文摘Based on the high-speed development of the fiber laser in recent years, the development of researching 915 nm semiconductor laser as main pumping sources of the fiber laser is at a high speed. Because the beam quality of the laser diode is very poor, the 915 nm laser diode is generally based on optical fiber coupling module to output the laser. Using the beam-shaping and fiber-coupling technology to improve the quality of output beam light, we present a kind of high-power and high-brightness semiconductor laser module, which can output 13.22 W through the optical fiber. Based on 915 nm GaAs semiconductor laser diode which has output power of 13.91 W, we describe a thoroughly detailed procedure for reshaping the beam output from the semiconductor laser diode and coupling the beam into the optical fiber of which the core diameter is 105 μm and the numerical aperture is 0.18. We get 13.22 W from the output fiber of the module at 14.5 A, the coupling efficiency of the whole module is 95.03% and the brightness is 1.5 MW/cm2-str. The output power of the single chip semiconductor laser module achieves the advanced level in the domestic use.
文摘The high power and low internal loss 1.06 μm InGaAs/GaAsP quantum well lasers with asymmetric waveguide structure were designed and fabricated. For a 4000 μm cavity length and 100 μm stripe width device,the maximum output power and conversion efficiency of the device are 7.13 W and 56.4%, respectively. The cavity length dependence of the threshold current density and conversion efficiency have been investigated theoretically and experimentally; the laser diode with 4000 μm cavity length shows better characteristics than that with 3000 and 4500 μm cavity length: the threshold current density is 132.5 A/cm^2, the slope efficiency of 1.00 W/A and the junction temperature of 15.62 K were achieved.