Band structure analysis holds significant importance for understanding the optoelectronic characteristics of semiconductor structures and exploring their potential applications in practice. For quantum well structures...Band structure analysis holds significant importance for understanding the optoelectronic characteristics of semiconductor structures and exploring their potential applications in practice. For quantum well structures, the energy of carriers in the well splits into discrete energy levels due to the confinement of barriers in the growth direction. However, the discrete energy levels obtained at a fixed wave vector cannot accurately reflect the actual energy band structure. In this work, the band structure of the type-II quantum wells is reanalyzed. When the wave vectors of the entire Brillouin region(corresponding to the growth direction) are taken into account, the quantized energy levels of the carriers in the well are replaced by subbands with certain energy distributions. This new understanding of the energy bands of low-dimensional structures not only helps us to have a deeper cognition of the structure, but also may overturn many viewpoints in traditional band theories and serve as supplementary to the band theory of low-dimensional systems.展开更多
A mercury pnictide halide semiconductor Hg19As10Br18(1) has been prepared by the solid-state reaction and structurally characterized by single-crystal X-ray diffraction analysis.Compound 1 crystallizes in triclinic,...A mercury pnictide halide semiconductor Hg19As10Br18(1) has been prepared by the solid-state reaction and structurally characterized by single-crystal X-ray diffraction analysis.Compound 1 crystallizes in triclinic,space group P with a = 11.262(4),b = 11.352(4),c = 12.309(5) ,α = 105.724(2),β = 105.788(4),γ = 109.0780(10)° and V = 1314.3(8) 3.The structure of 1 is composed of parallel perovskite-like layers bridged by the linearly coordinated Br atoms to form a three-dimensional framework.The optical properties were investigated in terms of the diffuse reflectance spectrum.The electronic band structure along with density of states(DOS) calculated by DFT method indicates that compound 1 is a semiconductor with an indirect band gap,and that the optical absorption is mainly originated from the charge transitions from Br-4p and As-4p to the Hg-6s states.展开更多
The choices of proper dopants and doping sites significantly influence the doping efficiency.In this work,using doping in Al N as an example,we discuss how to choose dopants and doping sites in semiconductors to creat...The choices of proper dopants and doping sites significantly influence the doping efficiency.In this work,using doping in Al N as an example,we discuss how to choose dopants and doping sites in semiconductors to create shallow defect levels.By comparing the defect properties of C_(N),O_(N),Mg_(Al),and Si_(Al)in AlN and analyzing the pros and cons of different doping approaches from the aspects of size mismatch between dopant and host elements,electronegativity difference and perturbation to the band edge states after the substitution,we propose that Mg_(Al)and Si_(Al)should be the best dopants and doping sites for p-type and n-type doping,respectively.Further first-principles calculations verify our predictions as these defects present lower formation energies and shallower defect levels.The defect charge distributions also show that the band edge states,which mainly consist of N-s and p orbitals,are less perturbed when Al is substituted,therefore,the derived defect states turn out to be delocalized,opposite to the situation when N is substituted.This approach of analyzing the band structure of the host material and choosing dopants and doping sites to minimize the perturbation on the host band structure is general and can provide reliable estimations for finding shallow defect levels in semiconductors.展开更多
Lattice constants and electronic structures of diluted magnetic semiconductors ( In, Mn ) As were investigated using the first principles LMTO-ASA band calculation by assuming supercell structures. Three concentrati...Lattice constants and electronic structures of diluted magnetic semiconductors ( In, Mn ) As were investigated using the first principles LMTO-ASA band calculation by assuming supercell structures. Three concentrations of the 3 d impurities were studied ( x = 1/2, 1/4, 1/8). The effect of varying Mn coucentrations on the lattice constants and the electronic structures are shown.展开更多
We present structural,magnetic and optical characteristics of Zn_(1-x)TM_xTe(TM = Mn,Fe,Co,Ni and x = 6.25%),calculated through Wien2 k code,by using full potential linearized augmented plane wave(FP-LAPW) techn...We present structural,magnetic and optical characteristics of Zn_(1-x)TM_xTe(TM = Mn,Fe,Co,Ni and x = 6.25%),calculated through Wien2 k code,by using full potential linearized augmented plane wave(FP-LAPW) technique.The optimization of the crystal structures have been done to compare the ferromagnetic(FM) and antiferromagnetic(AFM) ground state energies,to elucidate the ferromagnetic phase stability,which further has been verified through the formation and cohesive energies.Moreover,the estimated Curie temperatures T_c have demonstrated above room temperature ferromagnetism(RTFM) in Zn_(1-x)TM_xTe(TM =Mn,Fe,Co,Ni and x= 6.25%).The calculated electronic properties have depicted that Mn- and Co-doped ZnTe behave as ferromagnetic semiconductors,while half-metallic ferromagnetic behaviors are observed in Fe- and Ni-doped ZnTe.The presence of ferromagnetism is also demonstrated to be due to both the p-d and s-d hybridizations between the host lattice cations and TM impurities.The calculated band gaps and static real dielectric constants have been observed to vary according to Penn's model.The evaluated band gaps lie in near visible and ultraviolet regions,which make these materials suitable for various important device applications in optoelectronic and spintronic.展开更多
Extending the ionic conductivity is the pre-requisite of electrolytes in fuel cell technology for high-electrochemical performance.In this regard,the introduction of semiconductor-oxide materials and the approach of h...Extending the ionic conductivity is the pre-requisite of electrolytes in fuel cell technology for high-electrochemical performance.In this regard,the introduction of semiconductor-oxide materials and the approach of heterostructure formation by modulating energy bands to enhance ionic conduction acting as an electrolyte in fuel cell-device.Semiconductor(n-type;SnO_(2))plays a key role by introducing into p-type SrFe_(0.2)Ti_(0.8)O_(3-δ)(SFT)semiconductor perovskite materials to construct p-n heterojunction for high ionic conductivity.Therefore,two different composites of SFT and SnO_(2)are constructed by gluing p-and n-type SFT-SnO_(2),where the optimal composition of SFT-SnO_(2)(6∶4)heterostructure electrolyte-based fuel cell achieved excellent ionic conductivity 0.24 S cm^(-1)with power-output of 1004 mW cm^(-2)and high OCV 1.12 V at a low operational temperature of 500℃.The high power-output and significant ionic conductivity with durable operation of 54 h are accredited to SFT-SnO_(2)heterojunction formation including interfacial conduction assisted by a built-in electric field in fuel cell device.Moreover,the fuel conversion efficiency and considerable Faradaic efficiency reveal the compatibility of SFT-SnO_(2)heterostructure electrolyte and ruled-out short-circuiting issue.Further,the first principle calculation provides sufficient information on structure optimization and energy-band structure modulation of SFT-SnO_(2).This strategy will provide new insight into semiconductor-based fuel cell technology to design novel electrolytes.展开更多
We study structural,mechanical,and electronic properties of C_(20),Si_(20) and their alloys(C_(16)Si_4,C_(12)Si_8,C_8Si_(12),and C_4Si_(16)) in C2/m structure by using density functional theory(DFT) ba...We study structural,mechanical,and electronic properties of C_(20),Si_(20) and their alloys(C_(16)Si_4,C_(12)Si_8,C_8Si_(12),and C_4Si_(16)) in C2/m structure by using density functional theory(DFT) based on first-principles calculations.The obtained elastic constants and the phonon spectra reveal mechanical and dynamic stability.The calculated formation enthalpy shows that the C-Si alloys might exist at a specified high temperature scale.The ratio of BIG and Poisson's ratio indicate that these C-Si alloys in C2/m-20 structure are all brittle.The elastic anisotropic properties derived by bulk modulus and shear modulus show slight anisotropy.In addition,the band structures and density of states are also depicted,which reveal that C_(20),C_(16)Si_4,and Si_(20) are indirect band gap semiconductors,while C_8Si_(12) and C_4Si_(16) are semi-metallic alloys.Notably,a direct band gap semiconductor(C_(12)Si_8) is obtained by doping two indirect band gap semiconductors(C_(20) and Si_(20)).展开更多
With the help of the ab initio full-potential linearized augmented plane wave (FPLAPW) method, calculations of the electronic structure and linear optical properties are carried out for red HgI2 and yellow HgI2. It ...With the help of the ab initio full-potential linearized augmented plane wave (FPLAPW) method, calculations of the electronic structure and linear optical properties are carried out for red HgI2 and yellow HgI2. It is found that the red HgI2 has a direct gap of 1.22834 eV and the yellow HgI2 has an indirect gap of 2.11222 eV. For the red HgI2, the calculated optical spectra are qualitatively in agreement with the experimental data. Furthermore, the origins of the different peaks of ε2(ω) are discussed. Our calculated anisotropic dielectric function of the red HgI2 is a nice match with the experimental results. Our calculated results are able to reproduce the overall trend of the experimental reflectivity spectra. Although no comparable experimental and theoretical results are available, clearly, the above proves the reliability of our calculations, suggesting that our calculations should be convincing for the yellow HgI2. Finally, the different optical properties are discussed.展开更多
The plane-wave pseudo-potential method within the framework of first principles is used to investigate the structural and elastic properties of Mg2Si in its intermediate pressure (Pnma) and high pressure phases (P6...The plane-wave pseudo-potential method within the framework of first principles is used to investigate the structural and elastic properties of Mg2Si in its intermediate pressure (Pnma) and high pressure phases (P63/mrnc). The lattice constants, the band structures. The bulk moduli of the Mg2Si polymorphs are presented and discussed. The phase transition from anti-cotunnite to Ni2In-type Mg2Si is successfully reproduced using a vibrational Debye-like model. The phase boundary can be described as P = 24.02994 + 3.93 × 10^-3T -- 4.66816 × 10^-5T2 -- 2.2501 × 10^-9T3+ 2.33786 × 10^-11T4. To complete the fundamental characteristics of these polymorphs we have analysed thermodynamic properties, such as thermal expansion and heat capacity, in a pressure range of 1-40 GPa and a temperature range of 0-1300 K. The obtained results tend to support the available experimental data and other theoretical results. Therefore, the present results indicate that the combination of first principles and a vibrational Debye-like model is an efficient scheme to simulate the high temperature behaviours of Mg2Si.展开更多
Electronic and optical properties of rock-salt AIN under high pressure are investigated by first-principlesmethod based on the plane-wave basis set.Analysis of band structures suggests that the rock-salt AIN has an in...Electronic and optical properties of rock-salt AIN under high pressure are investigated by first-principlesmethod based on the plane-wave basis set.Analysis of band structures suggests that the rock-salt AIN has an indirectgap of 4.53 eV,which is in good agreement with other results.By investigating the effects of pressure on the energygap,the different movement of conduction band at X point below and above 22.5 GPa is predicted.The opticalproperties including dielectric function,absorption,reflectivity,and refractive index are also calculated and analyzed.Itis found that the rock-salt AIN is transparent from the partially ultra-violet to the visible light area and hardly does thetransparence affected by the pressure.Furthermore,the curve of optical spectrum will shift to high energy area (blueshift) with increasing pressure.展开更多
A theoretical basis of optimally designed BRAQWET is pr esented. The optimum parameters of MgZnSSe/ZnSe BRAQWET are obtained by the ca lculation of band-structure according to the depletion approximation.
Although tuning band structure of optoelectronic semiconductor-based materials by means of doping single defect is an important approach for potential photocatalysis application,C-doping or oxygen vacancy(Vo)as a sing...Although tuning band structure of optoelectronic semiconductor-based materials by means of doping single defect is an important approach for potential photocatalysis application,C-doping or oxygen vacancy(Vo)as a single defect in ZnO still has limitations for photocatalytic activity.Meanwhile,the influence of co-existence of various defects in ZnO still lacks sufficient studies.Therefore,we investigate the photocatalytic properties of ZnOx C0.0625(x=0.9375,0.875,0.8125),confirming that the co-effect of various defects has a greater enhancement for photocatalytic activity driven by visible-light than the single defect in ZnO.To clarify the underlying mechanism of co-existence of various defects in ZnO,we perform systematically the electronic properties calculations using density functional theory.It is found that the coeffect of C-doping and Vo in ZnO can achieve a more controllable band gap than doping solely in ZnO.Moreover,the impact of the effective masses of ZnO_(x)C_(0.0625)(x=0.9375,0.875,0.8125)is also taken into account.In comparison with heavy Vo concentrations,the light Vo concentration(x=0.875)as the optimal component together with C-doping in ZnO,can significantly improve the visible-light absorption and benefit photocatalytic activity.展开更多
Based on ab initio density functional theory calculations,we demonstrate that two carbon-doped boron nitride analog ofα-graphyne structures,B_(3) C_(2) N_(3)) and BC_(6) N monolayers,are two-dimensional direct wide b...Based on ab initio density functional theory calculations,we demonstrate that two carbon-doped boron nitride analog ofα-graphyne structures,B_(3) C_(2) N_(3)) and BC_(6) N monolayers,are two-dimensional direct wide band gap semiconductors,and there are two inequivalent valleys in the vicinities of the vertices of their hexagonal Brillouin zones.Besides,B_(3)C_(2)N_(3) and BC_(6)N monolayers exhibit relatively high carrier mobilities,and their direct band gap feature is robust against the biaxial strain.More importantly,the energetically most favorable B_(3)C_(2)N_(3) and BC_(6)N bilayers also have direct wide band gaps,and valley polarization could be achieved by optical helicity.Finally,we show that BC_(6) N monolayer might have high efficiency in photo-splitting reactions of water,and a vertical van der Waals heterostructure with a type-Ⅱenergy band alignment could be designed using B_(3)C_(2)N_(3)and BC_(6)N monolayers.All the above-mentioned characteristics make B_(3)C_(2)N_(3) and BC_(6)N monolayers,bilayers,and their heterostructures recommendable candidates for applications in valleytronic devices,metal-free photocatalysts,and photovoltaic cells.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61991441 and 62004218)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB01000000)Youth Innovation Promotion Association Chinese Academy of Sciences (Grant No. 2021005)。
文摘Band structure analysis holds significant importance for understanding the optoelectronic characteristics of semiconductor structures and exploring their potential applications in practice. For quantum well structures, the energy of carriers in the well splits into discrete energy levels due to the confinement of barriers in the growth direction. However, the discrete energy levels obtained at a fixed wave vector cannot accurately reflect the actual energy band structure. In this work, the band structure of the type-II quantum wells is reanalyzed. When the wave vectors of the entire Brillouin region(corresponding to the growth direction) are taken into account, the quantized energy levels of the carriers in the well are replaced by subbands with certain energy distributions. This new understanding of the energy bands of low-dimensional structures not only helps us to have a deeper cognition of the structure, but also may overturn many viewpoints in traditional band theories and serve as supplementary to the band theory of low-dimensional systems.
基金supported by the NNSFC (20801026)the NSF of Jiangxi Province (2008GQC0036)Foundation of State Key Laboratory of Structural Chemistry (20100015)
文摘A mercury pnictide halide semiconductor Hg19As10Br18(1) has been prepared by the solid-state reaction and structurally characterized by single-crystal X-ray diffraction analysis.Compound 1 crystallizes in triclinic,space group P with a = 11.262(4),b = 11.352(4),c = 12.309(5) ,α = 105.724(2),β = 105.788(4),γ = 109.0780(10)° and V = 1314.3(8) 3.The structure of 1 is composed of parallel perovskite-like layers bridged by the linearly coordinated Br atoms to form a three-dimensional framework.The optical properties were investigated in terms of the diffuse reflectance spectrum.The electronic band structure along with density of states(DOS) calculated by DFT method indicates that compound 1 is a semiconductor with an indirect band gap,and that the optical absorption is mainly originated from the charge transitions from Br-4p and As-4p to the Hg-6s states.
基金supported by the National Natural Science Foundation of China(Grants No.11991060,No.12088101,No.U2230402,and No.12304006)the Natural Science Foundation of WIUCAS(Grants No.WIUCASQD2023004)。
文摘The choices of proper dopants and doping sites significantly influence the doping efficiency.In this work,using doping in Al N as an example,we discuss how to choose dopants and doping sites in semiconductors to create shallow defect levels.By comparing the defect properties of C_(N),O_(N),Mg_(Al),and Si_(Al)in AlN and analyzing the pros and cons of different doping approaches from the aspects of size mismatch between dopant and host elements,electronegativity difference and perturbation to the band edge states after the substitution,we propose that Mg_(Al)and Si_(Al)should be the best dopants and doping sites for p-type and n-type doping,respectively.Further first-principles calculations verify our predictions as these defects present lower formation energies and shallower defect levels.The defect charge distributions also show that the band edge states,which mainly consist of N-s and p orbitals,are less perturbed when Al is substituted,therefore,the derived defect states turn out to be delocalized,opposite to the situation when N is substituted.This approach of analyzing the band structure of the host material and choosing dopants and doping sites to minimize the perturbation on the host band structure is general and can provide reliable estimations for finding shallow defect levels in semiconductors.
基金Funded by the National Natural Science Foundation of China(No.60476047) ,the Key Teacher Foundation of the EducationalBureau of Henan Province ,and the Natural Science Foundation ofthe Educational Bureau of Henan Province , China ( No:2003140027 ,2004140004)
文摘Lattice constants and electronic structures of diluted magnetic semiconductors ( In, Mn ) As were investigated using the first principles LMTO-ASA band calculation by assuming supercell structures. Three concentrations of the 3 d impurities were studied ( x = 1/2, 1/4, 1/8). The effect of varying Mn coucentrations on the lattice constants and the electronic structures are shown.
基金the University of the Punjab, Lahore for financial support through faculty research grant program
文摘We present structural,magnetic and optical characteristics of Zn_(1-x)TM_xTe(TM = Mn,Fe,Co,Ni and x = 6.25%),calculated through Wien2 k code,by using full potential linearized augmented plane wave(FP-LAPW) technique.The optimization of the crystal structures have been done to compare the ferromagnetic(FM) and antiferromagnetic(AFM) ground state energies,to elucidate the ferromagnetic phase stability,which further has been verified through the formation and cohesive energies.Moreover,the estimated Curie temperatures T_c have demonstrated above room temperature ferromagnetism(RTFM) in Zn_(1-x)TM_xTe(TM =Mn,Fe,Co,Ni and x= 6.25%).The calculated electronic properties have depicted that Mn- and Co-doped ZnTe behave as ferromagnetic semiconductors,while half-metallic ferromagnetic behaviors are observed in Fe- and Ni-doped ZnTe.The presence of ferromagnetism is also demonstrated to be due to both the p-d and s-d hybridizations between the host lattice cations and TM impurities.The calculated band gaps and static real dielectric constants have been observed to vary according to Penn's model.The evaluated band gaps lie in near visible and ultraviolet regions,which make these materials suitable for various important device applications in optoelectronic and spintronic.
基金supported by the National Natural Science Foundation of China(Grant No.32250410309 and 52105582)Natural Science Foundation of Guangdong Province(Grant No.2022A1515010894 and 2022B0303040002)+1 种基金Fundamental Research Foundation of Shenzhen(JCYJ20210324095210030 and JCYJ20220818095810023)Shenzhen-Hong Kong-Macao S&T Program(Category C:SGDX20210823103200004)
文摘Extending the ionic conductivity is the pre-requisite of electrolytes in fuel cell technology for high-electrochemical performance.In this regard,the introduction of semiconductor-oxide materials and the approach of heterostructure formation by modulating energy bands to enhance ionic conduction acting as an electrolyte in fuel cell-device.Semiconductor(n-type;SnO_(2))plays a key role by introducing into p-type SrFe_(0.2)Ti_(0.8)O_(3-δ)(SFT)semiconductor perovskite materials to construct p-n heterojunction for high ionic conductivity.Therefore,two different composites of SFT and SnO_(2)are constructed by gluing p-and n-type SFT-SnO_(2),where the optimal composition of SFT-SnO_(2)(6∶4)heterostructure electrolyte-based fuel cell achieved excellent ionic conductivity 0.24 S cm^(-1)with power-output of 1004 mW cm^(-2)and high OCV 1.12 V at a low operational temperature of 500℃.The high power-output and significant ionic conductivity with durable operation of 54 h are accredited to SFT-SnO_(2)heterojunction formation including interfacial conduction assisted by a built-in electric field in fuel cell device.Moreover,the fuel conversion efficiency and considerable Faradaic efficiency reveal the compatibility of SFT-SnO_(2)heterostructure electrolyte and ruled-out short-circuiting issue.Further,the first principle calculation provides sufficient information on structure optimization and energy-band structure modulation of SFT-SnO_(2).This strategy will provide new insight into semiconductor-based fuel cell technology to design novel electrolytes.
基金Project supported by the National Natural Science Foundation of China(Grant No.61474089)the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology,China Academy of Engineering Physics(Grant No.2015-0214.XY.K)
文摘We study structural,mechanical,and electronic properties of C_(20),Si_(20) and their alloys(C_(16)Si_4,C_(12)Si_8,C_8Si_(12),and C_4Si_(16)) in C2/m structure by using density functional theory(DFT) based on first-principles calculations.The obtained elastic constants and the phonon spectra reveal mechanical and dynamic stability.The calculated formation enthalpy shows that the C-Si alloys might exist at a specified high temperature scale.The ratio of BIG and Poisson's ratio indicate that these C-Si alloys in C2/m-20 structure are all brittle.The elastic anisotropic properties derived by bulk modulus and shear modulus show slight anisotropy.In addition,the band structures and density of states are also depicted,which reveal that C_(20),C_(16)Si_4,and Si_(20) are indirect band gap semiconductors,while C_8Si_(12) and C_4Si_(16) are semi-metallic alloys.Notably,a direct band gap semiconductor(C_(12)Si_8) is obtained by doping two indirect band gap semiconductors(C_(20) and Si_(20)).
基金Project supported by Program for Science and Technology Innovation Talents in Universities of Henan Province,China (Grant No. 2008HASTIT008)the National Natural Science Foundation of China (Grant No. 10574039)the Key Project Foundation of Science and Technology of He’nan Province,China (Grant No. 092102210166)
文摘With the help of the ab initio full-potential linearized augmented plane wave (FPLAPW) method, calculations of the electronic structure and linear optical properties are carried out for red HgI2 and yellow HgI2. It is found that the red HgI2 has a direct gap of 1.22834 eV and the yellow HgI2 has an indirect gap of 2.11222 eV. For the red HgI2, the calculated optical spectra are qualitatively in agreement with the experimental data. Furthermore, the origins of the different peaks of ε2(ω) are discussed. Our calculated anisotropic dielectric function of the red HgI2 is a nice match with the experimental results. Our calculated results are able to reproduce the overall trend of the experimental reflectivity spectra. Although no comparable experimental and theoretical results are available, clearly, the above proves the reliability of our calculations, suggesting that our calculations should be convincing for the yellow HgI2. Finally, the different optical properties are discussed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11005088 and 11047186)the Basic and Advanced Technology of Henan Province,China (Grant No. 102300410241)the Science and Technology of Henan Province,China (Grant No. 082300410050)
文摘The plane-wave pseudo-potential method within the framework of first principles is used to investigate the structural and elastic properties of Mg2Si in its intermediate pressure (Pnma) and high pressure phases (P63/mrnc). The lattice constants, the band structures. The bulk moduli of the Mg2Si polymorphs are presented and discussed. The phase transition from anti-cotunnite to Ni2In-type Mg2Si is successfully reproduced using a vibrational Debye-like model. The phase boundary can be described as P = 24.02994 + 3.93 × 10^-3T -- 4.66816 × 10^-5T2 -- 2.2501 × 10^-9T3+ 2.33786 × 10^-11T4. To complete the fundamental characteristics of these polymorphs we have analysed thermodynamic properties, such as thermal expansion and heat capacity, in a pressure range of 1-40 GPa and a temperature range of 0-1300 K. The obtained results tend to support the available experimental data and other theoretical results. Therefore, the present results indicate that the combination of first principles and a vibrational Debye-like model is an efficient scheme to simulate the high temperature behaviours of Mg2Si.
基金National Natural Science Foundation of China under Grant Nos.10576020 and 10776022
文摘Electronic and optical properties of rock-salt AIN under high pressure are investigated by first-principlesmethod based on the plane-wave basis set.Analysis of band structures suggests that the rock-salt AIN has an indirectgap of 4.53 eV,which is in good agreement with other results.By investigating the effects of pressure on the energygap,the different movement of conduction band at X point below and above 22.5 GPa is predicted.The opticalproperties including dielectric function,absorption,reflectivity,and refractive index are also calculated and analyzed.Itis found that the rock-salt AIN is transparent from the partially ultra-violet to the visible light area and hardly does thetransparence affected by the pressure.Furthermore,the curve of optical spectrum will shift to high energy area (blueshift) with increasing pressure.
文摘A theoretical basis of optimally designed BRAQWET is pr esented. The optimum parameters of MgZnSSe/ZnSe BRAQWET are obtained by the ca lculation of band-structure according to the depletion approximation.
基金Project supported by the National Natural Science Foundation of China(Grant No.11874038)the State Key Laboratory of Advanced Metallurgy Foundation in China(Grant No.KF19-03)。
文摘Although tuning band structure of optoelectronic semiconductor-based materials by means of doping single defect is an important approach for potential photocatalysis application,C-doping or oxygen vacancy(Vo)as a single defect in ZnO still has limitations for photocatalytic activity.Meanwhile,the influence of co-existence of various defects in ZnO still lacks sufficient studies.Therefore,we investigate the photocatalytic properties of ZnOx C0.0625(x=0.9375,0.875,0.8125),confirming that the co-effect of various defects has a greater enhancement for photocatalytic activity driven by visible-light than the single defect in ZnO.To clarify the underlying mechanism of co-existence of various defects in ZnO,we perform systematically the electronic properties calculations using density functional theory.It is found that the coeffect of C-doping and Vo in ZnO can achieve a more controllable band gap than doping solely in ZnO.Moreover,the impact of the effective masses of ZnO_(x)C_(0.0625)(x=0.9375,0.875,0.8125)is also taken into account.In comparison with heavy Vo concentrations,the light Vo concentration(x=0.875)as the optimal component together with C-doping in ZnO,can significantly improve the visible-light absorption and benefit photocatalytic activity.
基金the Special Foundation for Theoretical Physics Research Program of China(Grant No.11847065)the Natural Science Foundation of Shanxi Province,China(Grant No.201901D211115).
文摘Based on ab initio density functional theory calculations,we demonstrate that two carbon-doped boron nitride analog ofα-graphyne structures,B_(3) C_(2) N_(3)) and BC_(6) N monolayers,are two-dimensional direct wide band gap semiconductors,and there are two inequivalent valleys in the vicinities of the vertices of their hexagonal Brillouin zones.Besides,B_(3)C_(2)N_(3) and BC_(6)N monolayers exhibit relatively high carrier mobilities,and their direct band gap feature is robust against the biaxial strain.More importantly,the energetically most favorable B_(3)C_(2)N_(3) and BC_(6)N bilayers also have direct wide band gaps,and valley polarization could be achieved by optical helicity.Finally,we show that BC_(6) N monolayer might have high efficiency in photo-splitting reactions of water,and a vertical van der Waals heterostructure with a type-Ⅱenergy band alignment could be designed using B_(3)C_(2)N_(3)and BC_(6)N monolayers.All the above-mentioned characteristics make B_(3)C_(2)N_(3) and BC_(6)N monolayers,bilayers,and their heterostructures recommendable candidates for applications in valleytronic devices,metal-free photocatalysts,and photovoltaic cells.