This study aimed to investigate the pollution characteristics, source apportionment, and health risks associated with trace metal(loid)s(TMs) in the major agricultural producing areas in Chongqing, China. We analyzed ...This study aimed to investigate the pollution characteristics, source apportionment, and health risks associated with trace metal(loid)s(TMs) in the major agricultural producing areas in Chongqing, China. We analyzed the source apportionment and assessed the health risk of TMs in agricultural soils by using positive matrix factorization(PMF) model and health risk assessment(HRA) model based on Monte Carlo simulation. Meanwhile, we combined PMF and HRA models to explore the health risks of TMs in agricultural soils by different pollution sources to determine the priority control factors. Results showed that the average contents of cadmium(Cd), arsenic (As), lead(Pb), chromium(Cr), copper(Cu), nickel(Ni), and zinc(Zn) in the soil were found to be 0.26, 5.93, 27.14, 61.32, 23.81, 32.45, and 78.65 mg/kg, respectively. Spatial analysis and source apportionment analysis revealed that urban and industrial sources, agricultural sources, and natural sources accounted for 33.0%, 27.7%, and 39.3% of TM accumulation in the soil, respectively. In the HRA model based on Monte Carlo simulation, noncarcinogenic risks were deemed negligible(hazard index <1), the carcinogenic risks were at acceptable level(10^(-6)<total carcinogenic risk ≤ 10^(-4)), with higher risks observed for children compared to adults. The relationship between TMs, their sources, and health risks indicated that urban and industrial sources were primarily associated with As, contributing to 75.1% of carcinogenic risks and 55.7% of non-carcinogenic risks, making them the primary control factors. Meanwhile, agricultural sources were primarily linked to Cd and Pb, contributing to 13.1% of carcinogenic risks and 21.8% of non-carcinogenic risks, designating them as secondary control factors.展开更多
Minor self conjugate (msc) and skewpositive semidefinite (ssd) solutions to the system of matrix equations over skew fields [A mn X nn =A mn ,B sn X nn =O sn ] are considered. Necessary and su...Minor self conjugate (msc) and skewpositive semidefinite (ssd) solutions to the system of matrix equations over skew fields [A mn X nn =A mn ,B sn X nn =O sn ] are considered. Necessary and sufficient conditions for the existence of and the expressions for the msc solutions and the ssd solutions are obtained for the system.展开更多
This paper discusses the solutions of the linear matrix equation BT X B=Don some linear manifolds.Some necessary and sufficient conditions for the existenceof the solution and the expression of the general solution ar...This paper discusses the solutions of the linear matrix equation BT X B=Don some linear manifolds.Some necessary and sufficient conditions for the existenceof the solution and the expression of the general solution are given.And also someoptimal approximation solutions are discussed.展开更多
This paper discusses the necessary and sufficient conditions for the existence of Hermite positive definite solutions of the quaternion matrix equation X<sup>m</sup>+ B*XB = C (m > 0) and its iterative ...This paper discusses the necessary and sufficient conditions for the existence of Hermite positive definite solutions of the quaternion matrix equation X<sup>m</sup>+ B*XB = C (m > 0) and its iterative solution method. According to the characteristics of the coefficient matrix, a corresponding algebraic equation system is ingeniously constructed, and by discussing the equation system’s solvability, the matrix equation’s existence interval is obtained. Based on the characteristics of the coefficient matrix, some necessary and sufficient conditions for the existence of Hermitian positive definite solutions of the matrix equation are derived. Then, the upper and lower bounds of the positive actual solutions are estimated by using matrix inequalities. Four iteration formats are constructed according to the given conditions and existence intervals, and their convergence is proven. The selection method for the initial matrix is also provided. Finally, using the complexification operator of quaternion matrices, an equivalent iteration on the complex field is established to solve the equation in the Matlab environment. Two numerical examples are used to test the effectiveness and feasibility of the given method. .展开更多
Let A and C denote real n × n matrices. Given real n-vectors x1,……… ,xm,m≤n,and a set of numbers (L)={λ1,λ2…λm},We descrbe(Ⅰ)the set( ) of all real n × n bisymmetric positive seidefinite matrices A...Let A and C denote real n × n matrices. Given real n-vectors x1,……… ,xm,m≤n,and a set of numbers (L)={λ1,λ2…λm},We descrbe(Ⅰ)the set( ) of all real n × n bisymmetric positive seidefinite matrices A such that Axi is the "best"approximate to λixi, i = 1, 2,..., m in Frobenius norm and (Ⅱ) the Y in set ( )which minimize Frobenius norm of ||C - Y||.An existence theorem of the solutions for Problem Ⅰ and Problem Ⅱ is given andthe general expression of solutions for Problem Ⅰ is derived. Some sufficient conditionsunder which Problem Ⅰ and Problem Ⅱ have an explicit solution is provided. A numer-ical algorithm of the solution for Problem Ⅱ has been presented.展开更多
In this paper, a system of complex matrix equations was studied. Necessary and sufficient conditions for the existence and the expression of generalized bipositive semidefinite solution to the system were given. In ad...In this paper, a system of complex matrix equations was studied. Necessary and sufficient conditions for the existence and the expression of generalized bipositive semidefinite solution to the system were given. In addition, a criterion for a matrix to be generalized bipositive semidefinite was determined.展开更多
In this paper, we consider the positive semidefinite solution of the matrix equation (AT X A, BT X B) - (C, D). A necessary and sufficient condition for the existence of such solution is derived using the generalized ...In this paper, we consider the positive semidefinite solution of the matrix equation (AT X A, BT X B) - (C, D). A necessary and sufficient condition for the existence of such solution is derived using the generalized singular value decomposition.The general forms of positive semidefinite solution are given.展开更多
The symmetric positive definite solutions of matrix equations (AX,XB)=(C,D) and AXB=C are considered in this paper. Necessary and sufficient conditions for the matrix equations to have symmetric positive de...The symmetric positive definite solutions of matrix equations (AX,XB)=(C,D) and AXB=C are considered in this paper. Necessary and sufficient conditions for the matrix equations to have symmetric positive definite solutions are derived using the singular value and the generalized singular value decompositions. The expressions for the general symmetric positive definite solutions are given when certain conditions hold.展开更多
The range and existence conditions of the Hermitian positive definite solutions of nonlinear matrix equations Xs+A*X-tA=Q are studied, where A is an n×n non-singular complex matrix and Q is an n×n Hermitian ...The range and existence conditions of the Hermitian positive definite solutions of nonlinear matrix equations Xs+A*X-tA=Q are studied, where A is an n×n non-singular complex matrix and Q is an n×n Hermitian positive definite matrix and parameters s,t>0. Based on the matrix geometry theory, relevant matrix inequality and linear algebra technology, according to the different value ranges of the parameters s,t, the existence intervals of the Hermitian positive definite solution and the necessary conditions for equation solvability are presented, respectively. Comparing the existing correlation results, the proposed upper and lower bounds of the Hermitian positive definite solution are more accurate and applicable.展开更多
The problem of high-precision indoor positioning in the 5G era has attracted more and more attention.A fingerprint location method based on matrix completion(MC-FPL)is proposed for 5G ultradense networks to overcome t...The problem of high-precision indoor positioning in the 5G era has attracted more and more attention.A fingerprint location method based on matrix completion(MC-FPL)is proposed for 5G ultradense networks to overcome the high costs of traditional fingerprint database construction and matching algorithms.First,a partial fingerprint database constructed and the accelerated proximal gradient algorithm is used to fill the partial fingerprint database to construct a full fingerprint database.Second,a fingerprint database division method based on the strongest received signal strength indicator is proposed,which divides the original fingerprint database into several sub-fingerprint databases.Finally,a classification weighted K-nearest neighbor fingerprint matching algorithm is proposed.The estimated coordinates of the point to be located can be obtained by fingerprint matching in a sub-fingerprint database.The simulation results show that the MC-FPL algorithm can reduce the complexity of database construction and fingerprint matching and has higher positioning accuracy compared with the traditional fingerprint algorithm.展开更多
Let A∈C<sup>m×n</sup>,set eigenvalues of matrix A with |λ<sub>1</sub> (A)|≥|λ<sub>2</sub>(A)|≥…≥|λ<sub>n</sub>(A)|,write A≥0 if A is a positive semid...Let A∈C<sup>m×n</sup>,set eigenvalues of matrix A with |λ<sub>1</sub> (A)|≥|λ<sub>2</sub>(A)|≥…≥|λ<sub>n</sub>(A)|,write A≥0 if A is a positive semidefinite Hermitian matrix, and denote∧<sub>k</sub> (A)=diag (λ<sub>1</sub>(A),…,λ<sub>k</sub>(A)),∧<sub>(</sub>(n-k).(A)=diag (λ<sub>k+1</sub>(A),…,λ<sub>n</sub>(A))for any k=1, 2,...,n if A≥0. Denote all n order unitary matrices by U<sup>n×n</sup>.Problem of equalities to hold in eigenvalue inequalities for products of matrices展开更多
In this paper, we construct one of the forms of totally positive Toeplitz matrices from upper or lower bidiagonal totally nonnegative matrix. In addition, some properties related to this matrix involving its factoriza...In this paper, we construct one of the forms of totally positive Toeplitz matrices from upper or lower bidiagonal totally nonnegative matrix. In addition, some properties related to this matrix involving its factorization are presented.展开更多
Main resultsTheorem 1 Let A be symmetric positive semidefinite.Let (?) be a diagonally compen-sated reduced matrix of A and Let (?)=σI+(?)(σ】0) be a modiffication(Stieltjes) matrixof (?).Let the splitting (?)=M-(?)...Main resultsTheorem 1 Let A be symmetric positive semidefinite.Let (?) be a diagonally compen-sated reduced matrix of A and Let (?)=σI+(?)(σ】0) be a modiffication(Stieltjes) matrixof (?).Let the splitting (?)=M-(?) be regular and M=F-G be weak regular,where M andF are symmetric positive definite matrices.Then the resulting two-stage method corre-sponding to the diagonally compensated reduced splitting A=M-N and inner splitting M=F-G is convergent for any number μ≥1 of inner iterations.Furthermore,the展开更多
In this paper, the totally non-positive matrix is introduced. The totally non-positive completion asks which partial totally non-positive matrices have a completion to a totally non-positive matrix. This problem has. ...In this paper, the totally non-positive matrix is introduced. The totally non-positive completion asks which partial totally non-positive matrices have a completion to a totally non-positive matrix. This problem has. in general, a negative answer. Therefore, our question is for what kind of labeled graphs G each partial totally non-positive matrix whose associated graph is G has a totally non-positive completion? If G is not a monotonically labeled graph or monotonically labeled cycle, we give necessary and sufficient conditions that guarantee the existence of the desired completion.展开更多
For the lower bound about the determinant of Hadamard product of A and B, where A is a n × n real positive definite matrix and B is a n × n M-matrix, Jianzhou Liu [SLAM J. Matrix Anal. Appl., 18(2)(1997): 30...For the lower bound about the determinant of Hadamard product of A and B, where A is a n × n real positive definite matrix and B is a n × n M-matrix, Jianzhou Liu [SLAM J. Matrix Anal. Appl., 18(2)(1997): 305-311]obtained the estimated inequality as follows det(A o B)≥a11b11 nⅡk=2(bkk detAk/detAk-1+detBk/detBk-1(k-1Ei=1 aikaki/aii))=Ln(A,B),where Ak is kth order sequential principal sub-matrix of A. We establish an improved lower bound of the form Yn(A,B)=a11baa nⅡk=2(bkk detAk/detAk-1+akk detBk/detBk-1-detAdetBk/detak-1detBk-1)≥Ln(A,B).For more weaker and practical lower bound, Liu given thatdet(A o B)≥(nⅡi=1 bii)detA+(nⅡi=1 aii)detB(nⅡk=2 k-1Ei=1 aikaki/aiiakk)=(L)n(A,B).We further improve it as Yn(A,B)=(nⅡi=1 bii)detA+(nⅡi=1 aii)detB-(detA)(detB)+max1≤k≤n wn(A,B,k)≥(nⅡi=1 bii)detA+(nⅡi=1 aii)detB-(detA)(detB)≥(L)n(A,B).展开更多
基金supported by Project of Chongqing Science and Technology Bureau (cstc2022jxjl0005)。
文摘This study aimed to investigate the pollution characteristics, source apportionment, and health risks associated with trace metal(loid)s(TMs) in the major agricultural producing areas in Chongqing, China. We analyzed the source apportionment and assessed the health risk of TMs in agricultural soils by using positive matrix factorization(PMF) model and health risk assessment(HRA) model based on Monte Carlo simulation. Meanwhile, we combined PMF and HRA models to explore the health risks of TMs in agricultural soils by different pollution sources to determine the priority control factors. Results showed that the average contents of cadmium(Cd), arsenic (As), lead(Pb), chromium(Cr), copper(Cu), nickel(Ni), and zinc(Zn) in the soil were found to be 0.26, 5.93, 27.14, 61.32, 23.81, 32.45, and 78.65 mg/kg, respectively. Spatial analysis and source apportionment analysis revealed that urban and industrial sources, agricultural sources, and natural sources accounted for 33.0%, 27.7%, and 39.3% of TM accumulation in the soil, respectively. In the HRA model based on Monte Carlo simulation, noncarcinogenic risks were deemed negligible(hazard index <1), the carcinogenic risks were at acceptable level(10^(-6)<total carcinogenic risk ≤ 10^(-4)), with higher risks observed for children compared to adults. The relationship between TMs, their sources, and health risks indicated that urban and industrial sources were primarily associated with As, contributing to 75.1% of carcinogenic risks and 55.7% of non-carcinogenic risks, making them the primary control factors. Meanwhile, agricultural sources were primarily linked to Cd and Pb, contributing to 13.1% of carcinogenic risks and 21.8% of non-carcinogenic risks, designating them as secondary control factors.
文摘Minor self conjugate (msc) and skewpositive semidefinite (ssd) solutions to the system of matrix equations over skew fields [A mn X nn =A mn ,B sn X nn =O sn ] are considered. Necessary and sufficient conditions for the existence of and the expressions for the msc solutions and the ssd solutions are obtained for the system.
基金This work was supposed by the National Nature Science Foundation of China
文摘This paper discusses the solutions of the linear matrix equation BT X B=Don some linear manifolds.Some necessary and sufficient conditions for the existenceof the solution and the expression of the general solution are given.And also someoptimal approximation solutions are discussed.
文摘This paper discusses the necessary and sufficient conditions for the existence of Hermite positive definite solutions of the quaternion matrix equation X<sup>m</sup>+ B*XB = C (m > 0) and its iterative solution method. According to the characteristics of the coefficient matrix, a corresponding algebraic equation system is ingeniously constructed, and by discussing the equation system’s solvability, the matrix equation’s existence interval is obtained. Based on the characteristics of the coefficient matrix, some necessary and sufficient conditions for the existence of Hermitian positive definite solutions of the matrix equation are derived. Then, the upper and lower bounds of the positive actual solutions are estimated by using matrix inequalities. Four iteration formats are constructed according to the given conditions and existence intervals, and their convergence is proven. The selection method for the initial matrix is also provided. Finally, using the complexification operator of quaternion matrices, an equivalent iteration on the complex field is established to solve the equation in the Matlab environment. Two numerical examples are used to test the effectiveness and feasibility of the given method. .
基金Suported by National Nature Science Foundation of China
文摘Let A and C denote real n × n matrices. Given real n-vectors x1,……… ,xm,m≤n,and a set of numbers (L)={λ1,λ2…λm},We descrbe(Ⅰ)the set( ) of all real n × n bisymmetric positive seidefinite matrices A such that Axi is the "best"approximate to λixi, i = 1, 2,..., m in Frobenius norm and (Ⅱ) the Y in set ( )which minimize Frobenius norm of ||C - Y||.An existence theorem of the solutions for Problem Ⅰ and Problem Ⅱ is given andthe general expression of solutions for Problem Ⅰ is derived. Some sufficient conditionsunder which Problem Ⅰ and Problem Ⅱ have an explicit solution is provided. A numer-ical algorithm of the solution for Problem Ⅱ has been presented.
基金Project supported by the National Natural Science Foundation of China (Grant No.60672160)
文摘In this paper, a system of complex matrix equations was studied. Necessary and sufficient conditions for the existence and the expression of generalized bipositive semidefinite solution to the system were given. In addition, a criterion for a matrix to be generalized bipositive semidefinite was determined.
基金Partially supported by the National Natural Science Foundation of China(No10071035) and the Doctor Foundation of Hunan Normal University.
文摘In this paper, we consider the positive semidefinite solution of the matrix equation (AT X A, BT X B) - (C, D). A necessary and sufficient condition for the existence of such solution is derived using the generalized singular value decomposition.The general forms of positive semidefinite solution are given.
文摘The symmetric positive definite solutions of matrix equations (AX,XB)=(C,D) and AXB=C are considered in this paper. Necessary and sufficient conditions for the matrix equations to have symmetric positive definite solutions are derived using the singular value and the generalized singular value decompositions. The expressions for the general symmetric positive definite solutions are given when certain conditions hold.
基金The National Natural Science Foundation of China(No.11371089)the China Postdoctoral Science Foundation(No.2016M601688)
文摘The range and existence conditions of the Hermitian positive definite solutions of nonlinear matrix equations Xs+A*X-tA=Q are studied, where A is an n×n non-singular complex matrix and Q is an n×n Hermitian positive definite matrix and parameters s,t>0. Based on the matrix geometry theory, relevant matrix inequality and linear algebra technology, according to the different value ranges of the parameters s,t, the existence intervals of the Hermitian positive definite solution and the necessary conditions for equation solvability are presented, respectively. Comparing the existing correlation results, the proposed upper and lower bounds of the Hermitian positive definite solution are more accurate and applicable.
基金supported in part by Sub Project of National Key Research and Development plan in 2020.NO.2020YFC1511704Beijing Information Science and Technology University.NO.2020KYNH212,NO.2021CGZH302+1 种基金Beijing Science and Technology Project(Grant No.Z211100004421009)in part by the National Natural Science Foundation of China(Grant No.61971048)。
文摘The problem of high-precision indoor positioning in the 5G era has attracted more and more attention.A fingerprint location method based on matrix completion(MC-FPL)is proposed for 5G ultradense networks to overcome the high costs of traditional fingerprint database construction and matching algorithms.First,a partial fingerprint database constructed and the accelerated proximal gradient algorithm is used to fill the partial fingerprint database to construct a full fingerprint database.Second,a fingerprint database division method based on the strongest received signal strength indicator is proposed,which divides the original fingerprint database into several sub-fingerprint databases.Finally,a classification weighted K-nearest neighbor fingerprint matching algorithm is proposed.The estimated coordinates of the point to be located can be obtained by fingerprint matching in a sub-fingerprint database.The simulation results show that the MC-FPL algorithm can reduce the complexity of database construction and fingerprint matching and has higher positioning accuracy compared with the traditional fingerprint algorithm.
基金Supported partly by National Natural Science Foundation of China
文摘Let A∈C<sup>m×n</sup>,set eigenvalues of matrix A with |λ<sub>1</sub> (A)|≥|λ<sub>2</sub>(A)|≥…≥|λ<sub>n</sub>(A)|,write A≥0 if A is a positive semidefinite Hermitian matrix, and denote∧<sub>k</sub> (A)=diag (λ<sub>1</sub>(A),…,λ<sub>k</sub>(A)),∧<sub>(</sub>(n-k).(A)=diag (λ<sub>k+1</sub>(A),…,λ<sub>n</sub>(A))for any k=1, 2,...,n if A≥0. Denote all n order unitary matrices by U<sup>n×n</sup>.Problem of equalities to hold in eigenvalue inequalities for products of matrices
文摘In this paper, we construct one of the forms of totally positive Toeplitz matrices from upper or lower bidiagonal totally nonnegative matrix. In addition, some properties related to this matrix involving its factorization are presented.
文摘Main resultsTheorem 1 Let A be symmetric positive semidefinite.Let (?) be a diagonally compen-sated reduced matrix of A and Let (?)=σI+(?)(σ】0) be a modiffication(Stieltjes) matrixof (?).Let the splitting (?)=M-(?) be regular and M=F-G be weak regular,where M andF are symmetric positive definite matrices.Then the resulting two-stage method corre-sponding to the diagonally compensated reduced splitting A=M-N and inner splitting M=F-G is convergent for any number μ≥1 of inner iterations.Furthermore,the
文摘We exploit the theory of reproducing kernels to deduce a matrix inequality for the inverse of the restriction of a positive definite Hermitian matrix.
基金The work was supported by the National Science Foundation of China (10571146).
文摘In this paper, the totally non-positive matrix is introduced. The totally non-positive completion asks which partial totally non-positive matrices have a completion to a totally non-positive matrix. This problem has. in general, a negative answer. Therefore, our question is for what kind of labeled graphs G each partial totally non-positive matrix whose associated graph is G has a totally non-positive completion? If G is not a monotonically labeled graph or monotonically labeled cycle, we give necessary and sufficient conditions that guarantee the existence of the desired completion.
文摘For the lower bound about the determinant of Hadamard product of A and B, where A is a n × n real positive definite matrix and B is a n × n M-matrix, Jianzhou Liu [SLAM J. Matrix Anal. Appl., 18(2)(1997): 305-311]obtained the estimated inequality as follows det(A o B)≥a11b11 nⅡk=2(bkk detAk/detAk-1+detBk/detBk-1(k-1Ei=1 aikaki/aii))=Ln(A,B),where Ak is kth order sequential principal sub-matrix of A. We establish an improved lower bound of the form Yn(A,B)=a11baa nⅡk=2(bkk detAk/detAk-1+akk detBk/detBk-1-detAdetBk/detak-1detBk-1)≥Ln(A,B).For more weaker and practical lower bound, Liu given thatdet(A o B)≥(nⅡi=1 bii)detA+(nⅡi=1 aii)detB(nⅡk=2 k-1Ei=1 aikaki/aiiakk)=(L)n(A,B).We further improve it as Yn(A,B)=(nⅡi=1 bii)detA+(nⅡi=1 aii)detB-(detA)(detB)+max1≤k≤n wn(A,B,k)≥(nⅡi=1 bii)detA+(nⅡi=1 aii)detB-(detA)(detB)≥(L)n(A,B).