期刊文献+
共找到54篇文章
< 1 2 3 >
每页显示 20 50 100
ON SOLUTIONS OF BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS WITH JUMPS,WITH UNBOUNDED STOPPING TIMES AS TERMINAL AND WITH NON-LIPSCHITZ COEFFICIENTS,AND PROBABILISTIC INTERPRETATION OF QUASI-LINEAR ELLIPTIC TYPE INTEGRO-DIFFERENTIAL EQUATIO 被引量:1
1
作者 司徒荣 王越平 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第6期659-672,共14页
The existence and uniqueness of solutions to backward stochastic differential equations with jumps and with unbounded stopping time as terminal under the non_Lipschitz condition are obtained. The convergence of soluti... The existence and uniqueness of solutions to backward stochastic differential equations with jumps and with unbounded stopping time as terminal under the non_Lipschitz condition are obtained. The convergence of solutions and the continuous dependence of solutions on parameters are also derived. Then the probabilistic interpretation of solutions to some kinds of quasi_linear elliptic type integro_differential equations is obtained. 展开更多
关键词 backward stochastic differential equations(BSDEs) with jumps unbounded stopping time adapted solutions convergence of solutions quasi_linear elliptic equations integro_differential operators.
下载PDF
Freidlin-Wentzell’s Large Deviations for Stochastic Evolution Equations with Poisson Jumps 被引量:1
2
作者 Huiyan Zhao Siyan Xu 《Advances in Pure Mathematics》 2016年第10期676-694,共20页
We establish a Freidlin-Wentzell’s large deviation principle for general stochastic evolution equations with Poisson jumps and small multiplicative noises by using weak convergence method.
关键词 stochastic evolution equation Poisson jumps Freidlin-Wentzell’s Large Deviation Weak Convergence Method
下载PDF
A Mean-Field Stochastic Maximum Principle for Optimal Control of Forward-Backward Stochastic Differential Equations with Jumps via Malliavin Calculus 被引量:1
3
作者 Qing Zhou Yong Ren 《Journal of Applied Mathematics and Physics》 2018年第1期138-154,共17页
This paper considers a mean-field type stochastic control problem where the dynamics is governed by a forward and backward stochastic differential equation (SDE) driven by Lévy processes and the information avail... This paper considers a mean-field type stochastic control problem where the dynamics is governed by a forward and backward stochastic differential equation (SDE) driven by Lévy processes and the information available to the controller is possibly less than the overall information. All the system coefficients and the objective performance functional are allowed to be random, possibly non-Markovian. Malliavin calculus is employed to derive a maximum principle for the optimal control of such a system where the adjoint process is explicitly expressed. 展开更多
关键词 Malliavin CALCULUS Maximum PRINCIPLE FORWARD-backward stochastic Differential equations MEAN-FIELD Type JUMP Diffusion Partial Information
下载PDF
UNIQUENESS OF THE MILD SOLUTION OF SEMILINEAR STOCHASTIC EVOLUTION EQUATION IN HILBERT SPACE
4
作者 许明浩 胡则成 《Acta Mathematica Scientia》 SCIE CSCD 1993年第4期384-390,共7页
In this paper, we will consider following initial value problem of semilinear stochastic evolution equation in Hilbert Space: [GRAPHICS] where W(t) is a wiener process in H, H and Y are two real separable Hilbert Spac... In this paper, we will consider following initial value problem of semilinear stochastic evolution equation in Hilbert Space: [GRAPHICS] where W(t) is a wiener process in H, H and Y are two real separable Hilbert Spaces, A is an infinitesimal generator of a strongly continuous semigroup s(t) on Y, f(t, y): [0, T] x Y --> Y, and G(t, y): [0, T] X Y --> L(H, Y), y0: OMEGA --> Y is a ramdom variable of square integrable. We apply theory of the semigroup and obtain two conclusions of uniqueness of the mild solution of (1) which include the corresponding results in [4]. 展开更多
关键词 MILD UNIQUENESS OF THE MILD SOLUTION OF semilinear stochastic evolution equation IN HILBERT SPACE
下载PDF
A variational formula for controlled backward stochastic partial differential equations and some application
5
作者 MENG Qing-xin TANG Mao-ning 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2014年第3期295-306,共12页
An optimal control problem for a controlled backward stochastic partial differential equation in the abstract evolution form with a Bolza type performance functional is considered. The control domain is not assumed to... An optimal control problem for a controlled backward stochastic partial differential equation in the abstract evolution form with a Bolza type performance functional is considered. The control domain is not assumed to be convex, and all coefficients of the system are allowed to be random. A variational formula for the functional in a given control process direction is derived, by the Hamiltonian and associated adjoint system. As an application, a global stochastic maximum principle of Pontraygins type for the optimal controls is established. 展开更多
关键词 Variational formula stochastic evolution equation backward stochastic evolution equation stochastic maximum principle spike variation.
下载PDF
An Accurate Numerical Scheme for Mean-Field Forward and Backward SDEs with Jumps
6
作者 Yabing Sun Jie Yang Weidong Zhao 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2024年第1期243-274,共32页
In this work,we propose an explicit second order scheme for decoupled mean-field forward backward stochastic differential equations with jumps.The sta-bility and the rigorous error estimates are presented,which show th... In this work,we propose an explicit second order scheme for decoupled mean-field forward backward stochastic differential equations with jumps.The sta-bility and the rigorous error estimates are presented,which show that the proposed scheme yields a second order rate of convergence,when the forward mean-field stochastic differential equation is solved by the weak order 2.0 Itˆo-Taylor scheme.Numerical experiments are carried out to verify the theoretical results. 展开更多
关键词 Mean-field forward backward stochastic differential equation with jumps stability analysis error estimates
原文传递
Controlled Mean-Field Backward Stochastic Differential Equations with Jumps Involving the Value Function 被引量:2
7
作者 LI Juan MIN Hui 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2016年第5期1238-1268,共31页
This paper discusses mean-field backward stochastic differentiM equations (mean-field BS- DEs) with jumps and a new type of controlled mean-field BSDEs with jumps, namely mean-field BSDEs with jumps strongly coupled... This paper discusses mean-field backward stochastic differentiM equations (mean-field BS- DEs) with jumps and a new type of controlled mean-field BSDEs with jumps, namely mean-field BSDEs with jumps strongly coupled with the value function of the associated control problem. The authors first prove the existence and the uniqueness as well as a comparison theorem for the above two types of BSDEs. For this the authors use an approximation method. Then, with the help of the notion of stochastic backward semigroups introduced by Peng in 1997, the authors get the dynamic programming principle (DPP) for the value functions. Furthermore, the authors prove that the value function is a viscosity solution of the associated nonlocal Hamilton-Jacobi-Bellman (HJB) integro-partial differential equation, which is unique in an adequate space of continuous functions introduced by Barles, et al. in 1997. 展开更多
关键词 Dynamic programming principle (DPP) Hamilton-Jacobi-Bellman (HJB) equation mean-field backward stochastic differential equation (mean-field BSDE) with jump Poisson random measure value function.
原文传递
Path-dependent backward stochastic Volterra integral equations with jumps,differentiability and duality principle
8
作者 Ludger Overbeck Jasmin A.L.Roder 《Probability, Uncertainty and Quantitative Risk》 2018年第1期109-145,共37页
We study the existence and uniqueness of a solution to path-dependent backward stochastic Volterra integral equations(BSVIEs)with jumps,where path-dependence means the dependence of the free term and generator of a pa... We study the existence and uniqueness of a solution to path-dependent backward stochastic Volterra integral equations(BSVIEs)with jumps,where path-dependence means the dependence of the free term and generator of a path of a c`adl`ag process.Furthermore,we prove path-differentiability of such a solution and establish the duality principle between a linear path-dependent forward stochastic Volterra integral equation(FSVIE)with jumps and a linear path-dependent BSVIE with jumps.As a result of the duality principle we get a comparison theorem and derive a class of dynamic coherent risk measures based on path-dependent BSVIEs with jumps. 展开更多
关键词 Path-dependent backward stochastic Volterra integral equation Jump diffusion Path-differentiability Duality principle Comparison theorem Functional Ito formula Dynamic coherent risk measure
原文传递
带Markov跳的离散时间随机控制系统的最大值原理
9
作者 蔺香运 王鑫瑞 张维海 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第5期895-904,共10页
本文研究一类同时含有Markov跳过程和乘性噪声的离散时间非线性随机系统的最优控制问题,给出并证明了相应的最大值原理.首先,利用条件期望的平滑性,通过引入具有适应解的倒向随机差分方程,给出了带有线性差分方程约束的线性泛函的表示形... 本文研究一类同时含有Markov跳过程和乘性噪声的离散时间非线性随机系统的最优控制问题,给出并证明了相应的最大值原理.首先,利用条件期望的平滑性,通过引入具有适应解的倒向随机差分方程,给出了带有线性差分方程约束的线性泛函的表示形式,并利用Riesz定理证明其唯一性.其次,对带Markov跳的非线性随机控制系统,利用针状变分法,对状态方程进行一阶变分,获得其变分所满足的线性差分方程.然后,在引入Hamilton函数的基础上,通过一对由倒向随机差分方程刻画的伴随方程,给出并证明了带有Markov跳的离散时间非线性随机最优控制问题的最大值原理,并给出该最优控制问题的一个充分条件和相应的Hamilton-Jacobi-Bellman方程.最后,通过一个实际例子说明了所提理论的实用性和可行性. 展开更多
关键词 最大值原理 最优控制 Markov跳 倒向随机差分方程 HAMILTON-JACOBI-BELLMAN方程
下载PDF
BSDEs with Jumps and Path-Dependent Parabolic Integro-differential Equations 被引量:3
10
作者 Falei WANG 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2015年第4期625-644,共20页
This paper deals with backward stochastic differential equations with jumps,whose data(the terminal condition and coefficient) are given functions of jump-diffusion process paths. The author introduces a type of nonli... This paper deals with backward stochastic differential equations with jumps,whose data(the terminal condition and coefficient) are given functions of jump-diffusion process paths. The author introduces a type of nonlinear path-dependent parabolic integrodifferential equations, and then obtains a new type of nonlinear Feynman-Kac formula related to such BSDEs with jumps under some regularity conditions. 展开更多
关键词 backward stochastic differential equations Jump=diffusion processes Itointegral and Ito calculus Path-dependent parabolic integro=differentialequations
原文传递
On the speed of convergence of Picard iterations of backward stochastic differential equations
11
作者 Martin Hutzenthaler Thomas Kruse Tuan Anh Nguyen 《Probability, Uncertainty and Quantitative Risk》 2022年第2期133-150,共18页
It is a well-established fact in the scientific literature that Picard iterations of backward stochastic differential equations with globally Lipschitz continuous nonlinearities converge at least exponentially fast to... It is a well-established fact in the scientific literature that Picard iterations of backward stochastic differential equations with globally Lipschitz continuous nonlinearities converge at least exponentially fast to the solution.In this paper we prove that this convergence is in fact at least square-root factorially fast.We show for one example that no higher convergence speed is possible in general.Moreover,if the nonlinearity is zindependent,then the convergence is even factorially fast.Thus we reveal a phase transition in the speed of convergence of Picard iterations of backward stochastic differential equations. 展开更多
关键词 backward stochastic differential equation Picard iteration A priori estimate semilinear parabolic partial differential equation
原文传递
多维带跳倒向双重随机微分方程解的性质 被引量:7
12
作者 孙晓君 卢英 《应用概率统计》 CSCD 北大核心 2008年第1期73-82,共10页
本文研究一类多维带跳倒向双重随机微分方程,给出了It(?)公式在带跳倒向双重随机积分情形下的推广形式,同时运用推广形式的It(?)公式,在Lipschitz条件下证明了方程解的存在性和唯一性。
关键词 带跳倒向双重随机微分方程 伊藤公式 存在性 唯一性
下载PDF
收益流不连续时项目最佳投资时机分析 被引量:6
13
作者 范玉莲 王广富 《系统工程学报》 CSCD 北大核心 2007年第6期573-576,592,共5页
讨论了当项目收益流为不连续随机过程时,投资时机的选择问题.把投资机会看作一种实物期权,并用B rown运动和Poisson跳过程分别刻画收益流受到的连续性随机扰动和随机冲击(引起收益流不连续的随机事件),证明在此情况下可利用收益流当前... 讨论了当项目收益流为不连续随机过程时,投资时机的选择问题.把投资机会看作一种实物期权,并用B rown运动和Poisson跳过程分别刻画收益流受到的连续性随机扰动和随机冲击(引起收益流不连续的随机事件),证明在此情况下可利用收益流当前值的临界值作为投资时机选择的依据.进而,用带跳反射倒向随机微分方程方法解出这一临界值. 展开更多
关键词 带跳随机过程 投资时机 带跳反射倒向随机微分方程
下载PDF
Hilbert空间上带跳倒向随机发展方程的适应解(Ⅰ) 被引量:2
14
作者 司徒荣 许浣耀 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2001年第1期1-5,共5页
得到Hilbert空间上关于柱体布朗运动及Poisson随机鞅测度的鞅表示定理;证明了算子半群与算子群情形下Hilbert空间上关于柱体布朗运动及Poisson鞅测度的一类倒向随机发展方程的适应解的存在唯一性定理及重... 得到Hilbert空间上关于柱体布朗运动及Poisson随机鞅测度的鞅表示定理;证明了算子半群与算子群情形下Hilbert空间上关于柱体布朗运动及Poisson鞅测度的一类倒向随机发展方程的适应解的存在唯一性定理及重要估计式。 展开更多
关键词 鞅表示定理 带跳倒向随机发展方程 适应解 希尔伯特空间 算子半群 柱体布朗运动 POISSON鞅测度
下载PDF
非Lipschitz条件下的带跳的倒向随机微分方程 被引量:3
15
作者 李娟 《山东大学学报(理学版)》 CAS CSCD 北大核心 2003年第3期10-14,共5页
证明了带跳的倒向随机微分方程在某种非Lipschitz条件下的适应解的存在唯一性 ;
关键词 带跳的倒向随机微分方程 随机测度 泊松过程
下载PDF
关于系数平方增长的带跳BSDE的解(Ⅰ) 被引量:1
16
作者 司徒荣 黄纬 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2004年第6期48-51,共4页
讨论了系数关于q为平方增长,p和-y为指数增长的带跳倒向随机微分方程(BSDE)解的存在性,以及有这种系数的反射BSDE解的存在性。
关键词 带跳倒向随机微分方程(BSDE) 反射BSDE 平方增长系数 ITO公式 GIRSANOV定理 解的存在定理
下载PDF
反射型的带跳倒向双重随机微分方程(英文) 被引量:1
17
作者 范锡良 任永 《应用数学》 CSCD 北大核心 2009年第4期778-784,共7页
证明了反射型的带跳倒向双重随机微分方程的解的存在唯一性.主要方法是Snell包和不动点定理.
关键词 反射型的带跳倒向双重随机微分方程 Poisson随机测度 Snell包
下载PDF
一类带跳倒向重随机微分方程解的轨道唯一性 被引量:1
18
作者 杨叙 李硕 《通化师范学院学报》 2015年第10期31-33,共3页
建立一类带跳倒向重随机微分方程解的轨道唯一性,此工作是He等给出结果的一般化.
关键词 带跳倒向重随机微分方程 轨道唯一性 Gauss白噪声 Poisson随机测度
下载PDF
Hilbert空间上带跳倒向随机发展方程的适应解(Ⅱ)
19
作者 司徒荣 许浣耀 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2001年第2期1-5,共5页
证明算子半群与算子群情形下Hilbert空间上关于柱体布朗运动及Poisson鞅测度的一般半线性倒向随机发展方程适应解的存在惟一性定理 ,及其相应解的收敛定理 .
关键词 带跳半线性倒向随机发展方程 适应解 收敛定理 HIBERT空间 存在唯一性 算子群
下载PDF
Hilbert空间上一类半线性随机发展方程的稳定性
20
作者 张志刚 秦明达 《北京科技大学学报》 EI CAS CSCD 北大核心 1998年第1期93-98,共6页
讨论Hilbert空间上半线性随机发展方程dY的稳定性。为此引进了适度解的正则性和常返性等概念,利用Liapunov直接法得到了此类随机发展方程的随机渐近稳定性、随机指教稳定性、p-稳定性和几乎必然指数稳定性的充分性... 讨论Hilbert空间上半线性随机发展方程dY的稳定性。为此引进了适度解的正则性和常返性等概念,利用Liapunov直接法得到了此类随机发展方程的随机渐近稳定性、随机指教稳定性、p-稳定性和几乎必然指数稳定性的充分性判据。这些结果不但推广了有限维情形的工作,同时也发展了A.Ichikawa的工作。 展开更多
关键词 半线性 随机发展方程 稳定性 希尔伯特空间
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部