The existence and uniqueness of solutions to backward stochastic differential equations with jumps and with unbounded stopping time as terminal under the non_Lipschitz condition are obtained. The convergence of soluti...The existence and uniqueness of solutions to backward stochastic differential equations with jumps and with unbounded stopping time as terminal under the non_Lipschitz condition are obtained. The convergence of solutions and the continuous dependence of solutions on parameters are also derived. Then the probabilistic interpretation of solutions to some kinds of quasi_linear elliptic type integro_differential equations is obtained.展开更多
We establish a Freidlin-Wentzell’s large deviation principle for general stochastic evolution equations with Poisson jumps and small multiplicative noises by using weak convergence method.
This paper considers a mean-field type stochastic control problem where the dynamics is governed by a forward and backward stochastic differential equation (SDE) driven by Lévy processes and the information avail...This paper considers a mean-field type stochastic control problem where the dynamics is governed by a forward and backward stochastic differential equation (SDE) driven by Lévy processes and the information available to the controller is possibly less than the overall information. All the system coefficients and the objective performance functional are allowed to be random, possibly non-Markovian. Malliavin calculus is employed to derive a maximum principle for the optimal control of such a system where the adjoint process is explicitly expressed.展开更多
In this paper, we will consider following initial value problem of semilinear stochastic evolution equation in Hilbert Space: [GRAPHICS] where W(t) is a wiener process in H, H and Y are two real separable Hilbert Spac...In this paper, we will consider following initial value problem of semilinear stochastic evolution equation in Hilbert Space: [GRAPHICS] where W(t) is a wiener process in H, H and Y are two real separable Hilbert Spaces, A is an infinitesimal generator of a strongly continuous semigroup s(t) on Y, f(t, y): [0, T] x Y --> Y, and G(t, y): [0, T] X Y --> L(H, Y), y0: OMEGA --> Y is a ramdom variable of square integrable. We apply theory of the semigroup and obtain two conclusions of uniqueness of the mild solution of (1) which include the corresponding results in [4].展开更多
An optimal control problem for a controlled backward stochastic partial differential equation in the abstract evolution form with a Bolza type performance functional is considered. The control domain is not assumed to...An optimal control problem for a controlled backward stochastic partial differential equation in the abstract evolution form with a Bolza type performance functional is considered. The control domain is not assumed to be convex, and all coefficients of the system are allowed to be random. A variational formula for the functional in a given control process direction is derived, by the Hamiltonian and associated adjoint system. As an application, a global stochastic maximum principle of Pontraygins type for the optimal controls is established.展开更多
In this work,we propose an explicit second order scheme for decoupled mean-field forward backward stochastic differential equations with jumps.The sta-bility and the rigorous error estimates are presented,which show th...In this work,we propose an explicit second order scheme for decoupled mean-field forward backward stochastic differential equations with jumps.The sta-bility and the rigorous error estimates are presented,which show that the proposed scheme yields a second order rate of convergence,when the forward mean-field stochastic differential equation is solved by the weak order 2.0 Itˆo-Taylor scheme.Numerical experiments are carried out to verify the theoretical results.展开更多
This paper discusses mean-field backward stochastic differentiM equations (mean-field BS- DEs) with jumps and a new type of controlled mean-field BSDEs with jumps, namely mean-field BSDEs with jumps strongly coupled...This paper discusses mean-field backward stochastic differentiM equations (mean-field BS- DEs) with jumps and a new type of controlled mean-field BSDEs with jumps, namely mean-field BSDEs with jumps strongly coupled with the value function of the associated control problem. The authors first prove the existence and the uniqueness as well as a comparison theorem for the above two types of BSDEs. For this the authors use an approximation method. Then, with the help of the notion of stochastic backward semigroups introduced by Peng in 1997, the authors get the dynamic programming principle (DPP) for the value functions. Furthermore, the authors prove that the value function is a viscosity solution of the associated nonlocal Hamilton-Jacobi-Bellman (HJB) integro-partial differential equation, which is unique in an adequate space of continuous functions introduced by Barles, et al. in 1997.展开更多
We study the existence and uniqueness of a solution to path-dependent backward stochastic Volterra integral equations(BSVIEs)with jumps,where path-dependence means the dependence of the free term and generator of a pa...We study the existence and uniqueness of a solution to path-dependent backward stochastic Volterra integral equations(BSVIEs)with jumps,where path-dependence means the dependence of the free term and generator of a path of a c`adl`ag process.Furthermore,we prove path-differentiability of such a solution and establish the duality principle between a linear path-dependent forward stochastic Volterra integral equation(FSVIE)with jumps and a linear path-dependent BSVIE with jumps.As a result of the duality principle we get a comparison theorem and derive a class of dynamic coherent risk measures based on path-dependent BSVIEs with jumps.展开更多
This paper deals with backward stochastic differential equations with jumps,whose data(the terminal condition and coefficient) are given functions of jump-diffusion process paths. The author introduces a type of nonli...This paper deals with backward stochastic differential equations with jumps,whose data(the terminal condition and coefficient) are given functions of jump-diffusion process paths. The author introduces a type of nonlinear path-dependent parabolic integrodifferential equations, and then obtains a new type of nonlinear Feynman-Kac formula related to such BSDEs with jumps under some regularity conditions.展开更多
It is a well-established fact in the scientific literature that Picard iterations of backward stochastic differential equations with globally Lipschitz continuous nonlinearities converge at least exponentially fast to...It is a well-established fact in the scientific literature that Picard iterations of backward stochastic differential equations with globally Lipschitz continuous nonlinearities converge at least exponentially fast to the solution.In this paper we prove that this convergence is in fact at least square-root factorially fast.We show for one example that no higher convergence speed is possible in general.Moreover,if the nonlinearity is zindependent,then the convergence is even factorially fast.Thus we reveal a phase transition in the speed of convergence of Picard iterations of backward stochastic differential equations.展开更多
文摘The existence and uniqueness of solutions to backward stochastic differential equations with jumps and with unbounded stopping time as terminal under the non_Lipschitz condition are obtained. The convergence of solutions and the continuous dependence of solutions on parameters are also derived. Then the probabilistic interpretation of solutions to some kinds of quasi_linear elliptic type integro_differential equations is obtained.
文摘We establish a Freidlin-Wentzell’s large deviation principle for general stochastic evolution equations with Poisson jumps and small multiplicative noises by using weak convergence method.
文摘This paper considers a mean-field type stochastic control problem where the dynamics is governed by a forward and backward stochastic differential equation (SDE) driven by Lévy processes and the information available to the controller is possibly less than the overall information. All the system coefficients and the objective performance functional are allowed to be random, possibly non-Markovian. Malliavin calculus is employed to derive a maximum principle for the optimal control of such a system where the adjoint process is explicitly expressed.
基金This work is supported by the National Science Foundation of China.
文摘In this paper, we will consider following initial value problem of semilinear stochastic evolution equation in Hilbert Space: [GRAPHICS] where W(t) is a wiener process in H, H and Y are two real separable Hilbert Spaces, A is an infinitesimal generator of a strongly continuous semigroup s(t) on Y, f(t, y): [0, T] x Y --> Y, and G(t, y): [0, T] X Y --> L(H, Y), y0: OMEGA --> Y is a ramdom variable of square integrable. We apply theory of the semigroup and obtain two conclusions of uniqueness of the mild solution of (1) which include the corresponding results in [4].
基金Supported by the National Natural Science Foundation of China(11101140,11301177)the China Postdoctoral Science Foundation(2011M500721,2012T50391)the Zhejiang Natural Science Foundation of China(Y6110775,Y6110789)
文摘An optimal control problem for a controlled backward stochastic partial differential equation in the abstract evolution form with a Bolza type performance functional is considered. The control domain is not assumed to be convex, and all coefficients of the system are allowed to be random. A variational formula for the functional in a given control process direction is derived, by the Hamiltonian and associated adjoint system. As an application, a global stochastic maximum principle of Pontraygins type for the optimal controls is established.
基金supported by the NSF of China(Grant Nos.12071261,12001539,11801320,11831010,12371398)by the National Key R&D Program of China(Grant No.2018YFA0703900)+2 种基金by the NSF of Shandong Province(Grant No.ZR2023MA055)by the NSF of Hunan Province(Grant No.2020JJ5647)by the China Postdoctoral Science Foundation(Grant No.2019TQ0073).
文摘In this work,we propose an explicit second order scheme for decoupled mean-field forward backward stochastic differential equations with jumps.The sta-bility and the rigorous error estimates are presented,which show that the proposed scheme yields a second order rate of convergence,when the forward mean-field stochastic differential equation is solved by the weak order 2.0 Itˆo-Taylor scheme.Numerical experiments are carried out to verify the theoretical results.
基金supported by the National Natural Science Foundation of China under Grant Nos.11171187,11222110Shandong Province under Grant No.JQ201202+1 种基金Program for New Century Excellent Talents in University under Grant No.NCET-12-0331111 Project under Grant No.B12023
文摘This paper discusses mean-field backward stochastic differentiM equations (mean-field BS- DEs) with jumps and a new type of controlled mean-field BSDEs with jumps, namely mean-field BSDEs with jumps strongly coupled with the value function of the associated control problem. The authors first prove the existence and the uniqueness as well as a comparison theorem for the above two types of BSDEs. For this the authors use an approximation method. Then, with the help of the notion of stochastic backward semigroups introduced by Peng in 1997, the authors get the dynamic programming principle (DPP) for the value functions. Furthermore, the authors prove that the value function is a viscosity solution of the associated nonlocal Hamilton-Jacobi-Bellman (HJB) integro-partial differential equation, which is unique in an adequate space of continuous functions introduced by Barles, et al. in 1997.
文摘We study the existence and uniqueness of a solution to path-dependent backward stochastic Volterra integral equations(BSVIEs)with jumps,where path-dependence means the dependence of the free term and generator of a path of a c`adl`ag process.Furthermore,we prove path-differentiability of such a solution and establish the duality principle between a linear path-dependent forward stochastic Volterra integral equation(FSVIE)with jumps and a linear path-dependent BSVIE with jumps.As a result of the duality principle we get a comparison theorem and derive a class of dynamic coherent risk measures based on path-dependent BSVIEs with jumps.
基金supported by the National Natural Science Foundation of China(Nos.10921101,11471190)the Shandong Provincial Natural Science Foundation of China(No.ZR2014AM002)the Programme of Introducing Talents of Discipline to Universities of China(No.B12023)
文摘This paper deals with backward stochastic differential equations with jumps,whose data(the terminal condition and coefficient) are given functions of jump-diffusion process paths. The author introduces a type of nonlinear path-dependent parabolic integrodifferential equations, and then obtains a new type of nonlinear Feynman-Kac formula related to such BSDEs with jumps under some regularity conditions.
文摘It is a well-established fact in the scientific literature that Picard iterations of backward stochastic differential equations with globally Lipschitz continuous nonlinearities converge at least exponentially fast to the solution.In this paper we prove that this convergence is in fact at least square-root factorially fast.We show for one example that no higher convergence speed is possible in general.Moreover,if the nonlinearity is zindependent,then the convergence is even factorially fast.Thus we reveal a phase transition in the speed of convergence of Picard iterations of backward stochastic differential equations.