An existent theorem is obtained for nonzero W-1,W-2(R-N) solutions of the following equations on R-N -Delta u + b(x)u = f(x,u), x is an element of R-N, where b is periodic for some variables and coercive for the other...An existent theorem is obtained for nonzero W-1,W-2(R-N) solutions of the following equations on R-N -Delta u + b(x)u = f(x,u), x is an element of R-N, where b is periodic for some variables and coercive for the others, f is superlinear.展开更多
The asymptotic behavior at infinity and an estimate of positive radial solutions of the equation △u + sum from i=1 to k cirli upi = 0, x ∈ Rn,(0.1)are obtained and the structure of separation property of positive...The asymptotic behavior at infinity and an estimate of positive radial solutions of the equation △u + sum from i=1 to k cirli upi = 0, x ∈ Rn,(0.1)are obtained and the structure of separation property of positive radial solutions of Eq. (0.1) with different initial data α is discussed.展开更多
The existence and uniqueness of singular solutions decaying like r^-m(see (1.4)) of the equation △u+k∑i=1ci|x|liupi=0,x∈R^N are obtained, wheren≥3, ci 〉0, li〉-2, i=1,2,..,k, pi〉 1, i=l,2,-..,kandthe sepa...The existence and uniqueness of singular solutions decaying like r^-m(see (1.4)) of the equation △u+k∑i=1ci|x|liupi=0,x∈R^N are obtained, wheren≥3, ci 〉0, li〉-2, i=1,2,..,k, pi〉 1, i=l,2,-..,kandthe separation structure of singular solutions decaying like r^-(n-2) of eq. (0.1) are discussed. moreover, we obtain the explicit critical exponent ps (l) (see (1.9)).展开更多
Oscillation criteria for semilinear elliptic differential equations are obtained. The results are extensions of integral averaging technique of Kamenev. General means are employed to establish our results.
In this paper, we are concerned with positive entire solutions to elliptic equations of the form Δu+ f(x,u)= 0 x∈ RN N ≥ 3 where u →f(x,u) is not assumed to be regular near u = 0 and f(x,u) may be more general in...In this paper, we are concerned with positive entire solutions to elliptic equations of the form Δu+ f(x,u)= 0 x∈ RN N ≥ 3 where u →f(x,u) is not assumed to be regular near u = 0 and f(x,u) may be more general involving both singular and sublinear terms. Some sufficient conditions are given with the aid of the barrier method and ODE approach, which guarantee the existence of positive entire solutions that tend to any sufficiently large constants arbitrarily prescribed in advance.展开更多
This paper deals with the existence of solutions to the elliptic equation-△u-μ/|x|2=λu +|u|2*-2u + f(x,u) in Ω,u = 0 on (?)Ω, where Ω is a bounded domain in RN(N≥3), 0 ∈ Ω 2*=2N/N-2,λ> 0, λ (?) σμ,σμ...This paper deals with the existence of solutions to the elliptic equation-△u-μ/|x|2=λu +|u|2*-2u + f(x,u) in Ω,u = 0 on (?)Ω, where Ω is a bounded domain in RN(N≥3), 0 ∈ Ω 2*=2N/N-2,λ> 0, λ (?) σμ,σμ is the spectrum of the operator -△-μI/|x|2 with zero Dirichlet boundary condition, 0 <μ< μ-,μ-=(N-2)2/4, f(x,u)is an asymmetric lower order perturbation of |u|2* -1 at infinity. Using the dual variational methods, the existence of nontrivial solutions is proved.展开更多
In this paper,we have investigated the asymptotic behavior of nodal solutions of semilinear elliptic equations in R n. We conclude more precise and extensive results and give the expression of asymptotic behavior near...In this paper,we have investigated the asymptotic behavior of nodal solutions of semilinear elliptic equations in R n. We conclude more precise and extensive results and give the expression of asymptotic behavior near ∞ more detail than that of [3]-[5].展开更多
In this paper, we present the a posteriori error estimate of two-grid mixed finite element methods by averaging techniques for semilinear elliptic equations. We first propose the two-grid algorithms to linearize the m...In this paper, we present the a posteriori error estimate of two-grid mixed finite element methods by averaging techniques for semilinear elliptic equations. We first propose the two-grid algorithms to linearize the mixed method equations. Then, the averaging technique is used to construct the a posteriori error estimates of the two-grid mixed finite element method and theoretical analysis are given for the error estimators. Finally, we give some numerical examples to verify the reliability and efficiency of the a posteriori error estimator.展开更多
This paper is concerned with Neumann problem for semilinear elliptic equations involving Sobolev critical exponents with limit nonlinearity in boundary condition. By critical point theory and dual variational principl...This paper is concerned with Neumann problem for semilinear elliptic equations involving Sobolev critical exponents with limit nonlinearity in boundary condition. By critical point theory and dual variational principle, the author obtains the existence and multiplicity results.展开更多
In this article, we deal with a class of semilinear elliptic equations which are perturbations of the problems with the critical Hardy-Sobolev exponent. Some existence results are given via an abstract perturbation me...In this article, we deal with a class of semilinear elliptic equations which are perturbations of the problems with the critical Hardy-Sobolev exponent. Some existence results are given via an abstract perturbation method in critical point theory.展开更多
This paper deals with the Neumann problem for a class of semilinear elliptic equations -△u + u =|u|2*-2u+ μ|u|q-2u in Ω, au/ar= |u|(?)*-2u on aΩ, where 2 = 2N/N-2, s=2(N-1)/N-2, 1 <q<2,N(?)3,μ>γ denotes...This paper deals with the Neumann problem for a class of semilinear elliptic equations -△u + u =|u|2*-2u+ μ|u|q-2u in Ω, au/ar= |u|(?)*-2u on aΩ, where 2 = 2N/N-2, s=2(N-1)/N-2, 1 <q<2,N(?)3,μ>γ denotes the unit outward normal to boundary aΩ. By vaxiational method and dual fountain theorem, the existence of infinitely many solutions with negative energy is proved.展开更多
By Karamata regular variation theory and constructing comparison functions, the author shows the existence and global optimal asymptotic behaviour of solutions for a semilinear elliptic problem Δu = k(x)g(u), u ...By Karamata regular variation theory and constructing comparison functions, the author shows the existence and global optimal asymptotic behaviour of solutions for a semilinear elliptic problem Δu = k(x)g(u), u 〉 0, x ∈ Ω, u|δΩ =+∞, where Ω is a bounded domain with smooth boundary in R^N; g ∈ C^1[0, ∞), g(0) = g'(0) = 0, and there exists p 〉 1, such that lim g(sξ)/g(s)=ξ^p, ↓Aξ 〉 0, and k ∈ Cloc^α(Ω) is non-negative non-trivial in D which may be singular on the boundary.展开更多
In this article, the following concave and convex nonlinearities elliptic equations involving critical growth is considered,{-△u=g(x)|u|2*-2u+λf(x)|u|q-2u,x∈Ω u=0,x∈δΩ where Ω RN(N ≥ 3) is an op...In this article, the following concave and convex nonlinearities elliptic equations involving critical growth is considered,{-△u=g(x)|u|2*-2u+λf(x)|u|q-2u,x∈Ω u=0,x∈δΩ where Ω RN(N ≥ 3) is an open bounded domain with smooth boundary, 1 〈 q 〈 2, λ 〉 0. 2*= 2N/N-2 is the critical Sobolev exponent, f ∈L2*/2N/N-2 is nonzero and nonnegative, and g E (Ω) is a positive function with k local maximum points. By the Nehari method and variational method, k + 1 positive solutions are obtained. Our results complement and optimize the previous work by Lin [MR2870946, Nonlinear Anal. 75(2012) 2660-26711.展开更多
In this paper,we propose a method for solving semilinear elliptical equa-tions using a ResNet with ReLU2 activations.Firstly,we present a comprehensive formulation based on the penalized variational form of the ellipt...In this paper,we propose a method for solving semilinear elliptical equa-tions using a ResNet with ReLU2 activations.Firstly,we present a comprehensive formulation based on the penalized variational form of the elliptical equations.We then apply the Deep Ritz Method,which works for a wide range of equations.We obtain an upper bound on the errors between the acquired solutions and the true solutions in terms of the depth D,width W of the ReLU2 ResNet,and the num-ber of training samples n.Our simulation results demonstrate that our method can effectively overcome the curse of dimensionality and validate the theoretical results.展开更多
We study the following elliptic problem:{-div(a(x)Du)=Q(x)|u|2-2u+λu x∈Ω,u=0 onδΩ Under certain assumptions on a and Q, we obtain existence of infinitely many solutions by variational method.
By making use of bifurcation analysis and continuation method, the authors discuss the exact number of positive solutions for a class of perturbed equations. The nonlinearities concerned are the so-called convex-conca...By making use of bifurcation analysis and continuation method, the authors discuss the exact number of positive solutions for a class of perturbed equations. The nonlinearities concerned are the so-called convex-concave functions and their behaviors may be asymptotic sublinear or asymptotic linear. Moreover, precise global bifurcation diagrams are obtained.展开更多
This paper is devoted to the study of existence,uniqueness and non-degeneracy of positive solutions of semi-linear elliptic equations.A necessary and sufficient condition for the existence of positive solutions to pro...This paper is devoted to the study of existence,uniqueness and non-degeneracy of positive solutions of semi-linear elliptic equations.A necessary and sufficient condition for the existence of positive solutions to problems is given.We prove that if the uniqueness and non-degeneracy results are valid for positive solutions of a class of semi-linear elliptic equations,then they are still valid when one perturbs the differential operator a little bit.As consequences,some uniqueness results of positive solutions under the domain perturbation are also obtained.展开更多
In this paper, we investigate the superconvergence property and the L∞-errorestimates of mixed finite element methods for a semilinear elliptic control problem. Thestate and co-state are approximated by the lowest or...In this paper, we investigate the superconvergence property and the L∞-errorestimates of mixed finite element methods for a semilinear elliptic control problem. Thestate and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions.We derive some superconvergence results for the control variable. Moreover, we derive L^(∞)-error estimates both for the control variable and the state variables. Finally, anumerical example is given to demonstrate the theoretical results.展开更多
In this paper, the existence and multiplicity of a class of double resonant semilineax elliptic equations with the Dirichlet boundary value axe studied.
文摘An existent theorem is obtained for nonzero W-1,W-2(R-N) solutions of the following equations on R-N -Delta u + b(x)u = f(x,u), x is an element of R-N, where b is periodic for some variables and coercive for the others, f is superlinear.
基金Supported by the Natural Science Foundation of China(10901126)
文摘The asymptotic behavior at infinity and an estimate of positive radial solutions of the equation △u + sum from i=1 to k cirli upi = 0, x ∈ Rn,(0.1)are obtained and the structure of separation property of positive radial solutions of Eq. (0.1) with different initial data α is discussed.
基金Supported by the Natural Science Foundation of China(10901126)
文摘The existence and uniqueness of singular solutions decaying like r^-m(see (1.4)) of the equation △u+k∑i=1ci|x|liupi=0,x∈R^N are obtained, wheren≥3, ci 〉0, li〉-2, i=1,2,..,k, pi〉 1, i=l,2,-..,kandthe separation structure of singular solutions decaying like r^-(n-2) of eq. (0.1) are discussed. moreover, we obtain the explicit critical exponent ps (l) (see (1.9)).
文摘Oscillation criteria for semilinear elliptic differential equations are obtained. The results are extensions of integral averaging technique of Kamenev. General means are employed to establish our results.
文摘In this paper, we are concerned with positive entire solutions to elliptic equations of the form Δu+ f(x,u)= 0 x∈ RN N ≥ 3 where u →f(x,u) is not assumed to be regular near u = 0 and f(x,u) may be more general involving both singular and sublinear terms. Some sufficient conditions are given with the aid of the barrier method and ODE approach, which guarantee the existence of positive entire solutions that tend to any sufficiently large constants arbitrarily prescribed in advance.
文摘This paper deals with the existence of solutions to the elliptic equation-△u-μ/|x|2=λu +|u|2*-2u + f(x,u) in Ω,u = 0 on (?)Ω, where Ω is a bounded domain in RN(N≥3), 0 ∈ Ω 2*=2N/N-2,λ> 0, λ (?) σμ,σμ is the spectrum of the operator -△-μI/|x|2 with zero Dirichlet boundary condition, 0 <μ< μ-,μ-=(N-2)2/4, f(x,u)is an asymmetric lower order perturbation of |u|2* -1 at infinity. Using the dual variational methods, the existence of nontrivial solutions is proved.
文摘In this paper,we have investigated the asymptotic behavior of nodal solutions of semilinear elliptic equations in R n. We conclude more precise and extensive results and give the expression of asymptotic behavior near ∞ more detail than that of [3]-[5].
文摘In this paper, we present the a posteriori error estimate of two-grid mixed finite element methods by averaging techniques for semilinear elliptic equations. We first propose the two-grid algorithms to linearize the mixed method equations. Then, the averaging technique is used to construct the a posteriori error estimates of the two-grid mixed finite element method and theoretical analysis are given for the error estimators. Finally, we give some numerical examples to verify the reliability and efficiency of the a posteriori error estimator.
文摘This paper is concerned with Neumann problem for semilinear elliptic equations involving Sobolev critical exponents with limit nonlinearity in boundary condition. By critical point theory and dual variational principle, the author obtains the existence and multiplicity results.
基金Supported by National Natural Science Foundation of China(11071198)
文摘In this article, we deal with a class of semilinear elliptic equations which are perturbations of the problems with the critical Hardy-Sobolev exponent. Some existence results are given via an abstract perturbation method in critical point theory.
文摘This paper deals with the Neumann problem for a class of semilinear elliptic equations -△u + u =|u|2*-2u+ μ|u|q-2u in Ω, au/ar= |u|(?)*-2u on aΩ, where 2 = 2N/N-2, s=2(N-1)/N-2, 1 <q<2,N(?)3,μ>γ denotes the unit outward normal to boundary aΩ. By vaxiational method and dual fountain theorem, the existence of infinitely many solutions with negative energy is proved.
基金supported by the National Natural Science Foundation of China (10671169)
文摘By Karamata regular variation theory and constructing comparison functions, the author shows the existence and global optimal asymptotic behaviour of solutions for a semilinear elliptic problem Δu = k(x)g(u), u 〉 0, x ∈ Ω, u|δΩ =+∞, where Ω is a bounded domain with smooth boundary in R^N; g ∈ C^1[0, ∞), g(0) = g'(0) = 0, and there exists p 〉 1, such that lim g(sξ)/g(s)=ξ^p, ↓Aξ 〉 0, and k ∈ Cloc^α(Ω) is non-negative non-trivial in D which may be singular on the boundary.
基金Supported by National Natural Science Foundation of China(11471267)the Doctoral Scientific Research Funds of China West Normal University(15D006 and 16E014)+1 种基金Meritocracy Research Funds of China West Normal University(17YC383)Natural Science Foundation of Education of Guizhou Province(KY[2016]046)
文摘In this article, the following concave and convex nonlinearities elliptic equations involving critical growth is considered,{-△u=g(x)|u|2*-2u+λf(x)|u|q-2u,x∈Ω u=0,x∈δΩ where Ω RN(N ≥ 3) is an open bounded domain with smooth boundary, 1 〈 q 〈 2, λ 〉 0. 2*= 2N/N-2 is the critical Sobolev exponent, f ∈L2*/2N/N-2 is nonzero and nonnegative, and g E (Ω) is a positive function with k local maximum points. By the Nehari method and variational method, k + 1 positive solutions are obtained. Our results complement and optimize the previous work by Lin [MR2870946, Nonlinear Anal. 75(2012) 2660-26711.
基金supported by the National Key Research and Development Program of China(Grant No.2020YFA0714200)the National Nature Science Foundation of China(Grant Nos.12125103,12071362,12371424,12371441)supported by the Fundamental Research Funds for the Central Universities.The numerical calculations have been done at the Supercomputing Center of Wuhan University.
文摘In this paper,we propose a method for solving semilinear elliptical equa-tions using a ResNet with ReLU2 activations.Firstly,we present a comprehensive formulation based on the penalized variational form of the elliptical equations.We then apply the Deep Ritz Method,which works for a wide range of equations.We obtain an upper bound on the errors between the acquired solutions and the true solutions in terms of the depth D,width W of the ReLU2 ResNet,and the num-ber of training samples n.Our simulation results demonstrate that our method can effectively overcome the curse of dimensionality and validate the theoretical results.
基金supported by Key Project (10631030) of NSFCKnowledge Innovation Funds of CAS in Chinasupported by ARC in Australia
文摘We study the following elliptic problem:{-div(a(x)Du)=Q(x)|u|2-2u+λu x∈Ω,u=0 onδΩ Under certain assumptions on a and Q, we obtain existence of infinitely many solutions by variational method.
基金supported by the Foundation of Shanghai Municipal Education Commission (No. 06DZ004).
文摘By making use of bifurcation analysis and continuation method, the authors discuss the exact number of positive solutions for a class of perturbed equations. The nonlinearities concerned are the so-called convex-concave functions and their behaviors may be asymptotic sublinear or asymptotic linear. Moreover, precise global bifurcation diagrams are obtained.
基金the National Natural Science Foundation of China(Grant Nos.10671064,10171029)
文摘This paper is devoted to the study of existence,uniqueness and non-degeneracy of positive solutions of semi-linear elliptic equations.A necessary and sufficient condition for the existence of positive solutions to problems is given.We prove that if the uniqueness and non-degeneracy results are valid for positive solutions of a class of semi-linear elliptic equations,then they are still valid when one perturbs the differential operator a little bit.As consequences,some uniqueness results of positive solutions under the domain perturbation are also obtained.
文摘In this paper, we investigate the superconvergence property and the L∞-errorestimates of mixed finite element methods for a semilinear elliptic control problem. Thestate and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions.We derive some superconvergence results for the control variable. Moreover, we derive L^(∞)-error estimates both for the control variable and the state variables. Finally, anumerical example is given to demonstrate the theoretical results.
基金The first author is supported by -National Natural Science Foundation of China the second author is supported by the Doctoral Fund of North China University of Technology
文摘In this paper, the existence and multiplicity of a class of double resonant semilineax elliptic equations with the Dirichlet boundary value axe studied.