In this paper, a novel calibration integral equation is derived for resolving double-sided, two-probe inverse heat conduction problem of surface heat flux estimation. In contrast to the conventional inverse heat condu...In this paper, a novel calibration integral equation is derived for resolving double-sided, two-probe inverse heat conduction problem of surface heat flux estimation. In contrast to the conventional inverse heat conduction techniques, this calibration approach does not require explicit input of the probe locations, thermophysical properties of the host material and temperature sensor parameters related to thermal contact resistance, sensor capacitance and conductive lead losses. All those parameters and properties are inherently contained in the calibration framework in terms of Volterra integral equation of the first kind. The Laplace transform technique is applied and the frequency domain manipulations of the heat equation are performed for deriving the calibration integral equation. Due to the ill-posed nature, regularization is required for the inverse heat conduction problem, a future-time method or singular value decomposition (SVD) can be used for stabilizing the ill-posed Volterra integral equation of the first kind.展开更多
The classical heat conduction equation is derived from the assumption that the temperature increases immediately after heat transfer, but the increase of temperature is a slow process, so the memory-dependent heat con...The classical heat conduction equation is derived from the assumption that the temperature increases immediately after heat transfer, but the increase of temperature is a slow process, so the memory-dependent heat conduction model has been reconstructed. Numerical results show that the solution of the initial boundary value problem of the new model is similar to that of the classical heat conduction equation, but its propagation speed is slower than that of the latter. In addition, the propagation speed of the former is also affected by time delay and kernel function.展开更多
The existence of global solutions, asymptotic behavior and the L^p blow-up of non-global solutions to the initial value problem are studied. We consider only the case: 1<γ<(n+2)/(n—2). It is proved that the pr...The existence of global solutions, asymptotic behavior and the L^p blow-up of non-global solutions to the initial value problem are studied. We consider only the case: 1<γ<(n+2)/(n—2). It is proved that the properties of the solutions depend only on the relations between the initial data φ(x) and the unique positive equilibrium solution. The threshold is obtained.展开更多
In this paper we consider a non-standard inverse heat conduction problem for determining surface heat flux from an interior observation which appears in some applied subjects. This problem is ill-posed in the sense th...In this paper we consider a non-standard inverse heat conduction problem for determining surface heat flux from an interior observation which appears in some applied subjects. This problem is ill-posed in the sense that the solution (if it exists)does not depend continuously on the data. A Fourier method is applied to formulate a regularized approximation solution, and some sharp error estimates are also given.展开更多
The inverse heat conduction problem (IHCP) is a severely ill-posed problem in the sense that the solution ( if it exists) does not depend continuously on the data. But now the results on inverse heat conduction pr...The inverse heat conduction problem (IHCP) is a severely ill-posed problem in the sense that the solution ( if it exists) does not depend continuously on the data. But now the results on inverse heat conduction problem are mainly devoted to the standard inverse heat conduction problem. Some optimal error bounds in a Sobolev space of regularized approximation solutions for a sideways parabolic equation, i. e. , a non-standard inverse heat conduction problem with convection term which appears in some applied subject are given.展开更多
This paper deals with a parabolic system in a multi dimentional bounded domain ΩR n with the smooth boundary Ω. We discuss an inverse parabolic problem of determining the indirectly measurable internal heat distri...This paper deals with a parabolic system in a multi dimentional bounded domain ΩR n with the smooth boundary Ω. We discuss an inverse parabolic problem of determining the indirectly measurable internal heat distribution at any intermediate moment from the heat distribution measurements in arbitrary accessible subdomain ωΩ at some time interval. Our main result is the Hlder stability estimate in the inverse problem and the proof is completed with a Carleman estimate and a eigenfunction expansion for parabolic equations.展开更多
The present paper deals with the determination of quasi-static thermal stresses due to an instantaneous point heat source of strength g_(pi) situated at certain circle along the radial direction of the circular plate ...The present paper deals with the determination of quasi-static thermal stresses due to an instantaneous point heat source of strength g_(pi) situated at certain circle along the radial direction of the circular plate and releasing its heat spontaneously at time t=τ.A circular plate is considered having arbitrary initial temperature and subjected to time dependent heat flux at the fixed circular boundary of r=b.The governing heat conduction equation is solved by using the integral transform method,and results are obtained in series form in terms of Bessel functions.The mathematical model has been constructed for copper material and the thermal stresses are discussed graphically.展开更多
文摘In this paper, a novel calibration integral equation is derived for resolving double-sided, two-probe inverse heat conduction problem of surface heat flux estimation. In contrast to the conventional inverse heat conduction techniques, this calibration approach does not require explicit input of the probe locations, thermophysical properties of the host material and temperature sensor parameters related to thermal contact resistance, sensor capacitance and conductive lead losses. All those parameters and properties are inherently contained in the calibration framework in terms of Volterra integral equation of the first kind. The Laplace transform technique is applied and the frequency domain manipulations of the heat equation are performed for deriving the calibration integral equation. Due to the ill-posed nature, regularization is required for the inverse heat conduction problem, a future-time method or singular value decomposition (SVD) can be used for stabilizing the ill-posed Volterra integral equation of the first kind.
文摘The classical heat conduction equation is derived from the assumption that the temperature increases immediately after heat transfer, but the increase of temperature is a slow process, so the memory-dependent heat conduction model has been reconstructed. Numerical results show that the solution of the initial boundary value problem of the new model is similar to that of the classical heat conduction equation, but its propagation speed is slower than that of the latter. In addition, the propagation speed of the former is also affected by time delay and kernel function.
基金Project supported by the Post Doctor Foundation of China.
文摘The existence of global solutions, asymptotic behavior and the L^p blow-up of non-global solutions to the initial value problem are studied. We consider only the case: 1<γ<(n+2)/(n—2). It is proved that the properties of the solutions depend only on the relations between the initial data φ(x) and the unique positive equilibrium solution. The threshold is obtained.
基金NNSF of China (No. 10271050)NSF of Gansu Province, China (ZS021-A25-001-Z)
文摘In this paper we consider a non-standard inverse heat conduction problem for determining surface heat flux from an interior observation which appears in some applied subjects. This problem is ill-posed in the sense that the solution (if it exists)does not depend continuously on the data. A Fourier method is applied to formulate a regularized approximation solution, and some sharp error estimates are also given.
文摘The inverse heat conduction problem (IHCP) is a severely ill-posed problem in the sense that the solution ( if it exists) does not depend continuously on the data. But now the results on inverse heat conduction problem are mainly devoted to the standard inverse heat conduction problem. Some optimal error bounds in a Sobolev space of regularized approximation solutions for a sideways parabolic equation, i. e. , a non-standard inverse heat conduction problem with convection term which appears in some applied subject are given.
文摘This paper deals with a parabolic system in a multi dimentional bounded domain ΩR n with the smooth boundary Ω. We discuss an inverse parabolic problem of determining the indirectly measurable internal heat distribution at any intermediate moment from the heat distribution measurements in arbitrary accessible subdomain ωΩ at some time interval. Our main result is the Hlder stability estimate in the inverse problem and the proof is completed with a Carleman estimate and a eigenfunction expansion for parabolic equations.
文摘The present paper deals with the determination of quasi-static thermal stresses due to an instantaneous point heat source of strength g_(pi) situated at certain circle along the radial direction of the circular plate and releasing its heat spontaneously at time t=τ.A circular plate is considered having arbitrary initial temperature and subjected to time dependent heat flux at the fixed circular boundary of r=b.The governing heat conduction equation is solved by using the integral transform method,and results are obtained in series form in terms of Bessel functions.The mathematical model has been constructed for copper material and the thermal stresses are discussed graphically.