期刊文献+
共找到148篇文章
< 1 2 8 >
每页显示 20 50 100
A Class of Shock Solutions for the Semilinear Singularly Perturbed Boundary Value Problem 被引量:1
1
作者 王庚 《Journal of Southwest Jiaotong University(English Edition)》 2004年第2期190-192,共3页
The shock solution for the semilinear singularly perturbed two-point boundary value problem was studied. Under suitable conditions and using the theory of differential inequalities, the existence and asymptotic behavi... The shock solution for the semilinear singularly perturbed two-point boundary value problem was studied. Under suitable conditions and using the theory of differential inequalities, the existence and asymptotic behavior of the solution for the original boundary value problems are discussed. The uniformly effective asymptotic expansion and estimation of solution u(x, ε) were obtained. 展开更多
关键词 Shock solution semilinear equation Boundary value problem Singular perturbation
下载PDF
MULTIDIMENSIONAL GOURSAT PROBLEM FOR SEMILINEAR HYPERBOLIC EQUATIONS
2
作者 FANG DAOYUAN GONG XIAOQING Department of Applied Mathematics, Zhejiang University, Hangzhou 310027 Department of Applied Mathematics, Wuhan University of Hydraulic and Electrical Engineering, Wuhan 430072 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 1996年第1期43-50,共8页
In this paper we study the Goursat problem for semilinear hyperbolicequations with zero boundary condition where the boundary is the characteristic conefor hyperbolic operator. Our result shows that the solution is Li... In this paper we study the Goursat problem for semilinear hyperbolicequations with zero boundary condition where the boundary is the characteristic conefor hyperbolic operator. Our result shows that the solution is Lipschitz and is smoothaway from the characteristic cone. 展开更多
关键词 Multidimensional Goursat problem semilinear equation Lipschitz solution
下载PDF
Convergence and Superconvergence of the Local Discontinuous Galerkin Method for Semilinear Second‑Order Elliptic Problems on Cartesian Grids
3
作者 Mahboub Baccouch 《Communications on Applied Mathematics and Computation》 2022年第2期437-476,共40页
This paper is concerned with convergence and superconvergence properties of the local discontinuous Galerkin(LDG)method for two-dimensional semilinear second-order elliptic problems of the form−Δu=f(x,y,u)on Cartesia... This paper is concerned with convergence and superconvergence properties of the local discontinuous Galerkin(LDG)method for two-dimensional semilinear second-order elliptic problems of the form−Δu=f(x,y,u)on Cartesian grids.By introducing special GaussRadau projections and using duality arguments,we obtain,under some suitable choice of numerical fuxes,the optimal convergence order in L2-norm of O(h^(p+1))for the LDG solution and its gradient,when tensor product polynomials of degree at most p and grid size h are used.Moreover,we prove that the LDG solutions are superconvergent with an order p+2 toward particular Gauss-Radau projections of the exact solutions.Finally,we show that the error between the gradient of the LDG solution and the gradient of a special Gauss-Radau projection of the exact solution achieves(p+1)-th order superconvergence.Some numerical experiments are performed to illustrate the theoretical results. 展开更多
关键词 semilinear second-order elliptic boundary-value problems Local discontinuous Galerkin method A priori error estimation Optimal superconvergence SUPERCLOSENESS Gauss-Radau projections
下载PDF
Error Estimates of a New Lowest Order Mixed Finite Element Approximation for Semilinear Optimal Control Problems
4
作者 Zuliang Lu Dayong Liu 《数学计算(中英文版)》 2013年第3期62-67,共6页
关键词 混合有限元方法 最优控制问题 先验误差估计 有限元逼近 半线性 低阶 有限元空间 近似逼近
下载PDF
ON NEUMANN PROBLEM FOR SOMESEMILINEAR ELLIPTIC EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS 被引量:1
5
作者 谢资清 《Acta Mathematica Scientia》 SCIE CSCD 1998年第2期186-196,共11页
This paper is concerned with Neumann problem for semilinear elliptic equations involving Sobolev critical exponents with limit nonlinearity in boundary condition. By critical point theory and dual variational principl... This paper is concerned with Neumann problem for semilinear elliptic equations involving Sobolev critical exponents with limit nonlinearity in boundary condition. By critical point theory and dual variational principle, the author obtains the existence and multiplicity results. 展开更多
关键词 Neumann problem semilinear elliptic equation positive solution multiplicity of solutions
全文增补中
THE NUMERICAL SOLUTION OF A SINGULARLY PERTURBED PROBLEM FOR SEMILINEAR PARABOLIC DIFFERENTIAL EQUATION
6
作者 苏煜城 沈全 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1991年第11期1047-1056,共10页
The numerical solution of a singularly perturbed problem for the semilinear parabolic differential equation with parabolic boundary layers is discussed. A nonlinear two-level difference scheme is constructed on the sp... The numerical solution of a singularly perturbed problem for the semilinear parabolic differential equation with parabolic boundary layers is discussed. A nonlinear two-level difference scheme is constructed on the special non-uniform grids. The uniform con vergence of this scheme is proved and some numerical examples are given. 展开更多
关键词 semilinear parabolic differential equation singularly perturbed problem finite difference method uniform convergence
下载PDF
A UNIFORMLY DIFFERENCE SCHEME OF SINGULAR PERTURBATION PROBLEM FOR A SEMILINEAR ORDINARY DIFFERENTIAL EQUATION WITH MIXED BOUNDARY VALUE CONDITION
7
作者 白清源 林鹏程 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1996年第2期187-195,共9页
In the poper, the method of separating singularity is applied to study the uniformly difference scheme of a singular perturbation problem for a semilinear ordinary differential equation with mixed boundary value condi... In the poper, the method of separating singularity is applied to study the uniformly difference scheme of a singular perturbation problem for a semilinear ordinary differential equation with mixed boundary value condition. The uniform convergence on small parameter ε of order one for an IVin type difference scheme constructed is proved. At the end of the paper, a numerical example is given. The computing results coincide with the theoretical analysis. 展开更多
关键词 singular perturbation problem difference scheme uniform convergence mixed boundary value condition semilinear ordinary differential equation
下载PDF
A Nitsche-Based Element-Free Galerkin Method for Semilinear Elliptic Problems
8
作者 Tao Zhang Xiaolin Li 《Advances in Applied Mathematics and Mechanics》 SCIE 2024年第1期24-46,共23页
A Nitsche-based element-free Galerkin(EFG)method for solving semilinear elliptic problems is developed and analyzed in this paper.The existence and uniqueness of the weak solution for semilinear elliptic problems are ... A Nitsche-based element-free Galerkin(EFG)method for solving semilinear elliptic problems is developed and analyzed in this paper.The existence and uniqueness of the weak solution for semilinear elliptic problems are proved based on a condition that the nonlinear term is an increasing Lipschitz continuous function of the unknown function.A simple iterative scheme is used to deal with the nonlinear integral term.We proved the existence,uniqueness and convergence of the weak solution sequence for continuous level of the simple iterative scheme.A commonly used assumption for approximate space,sometimes called inverse assumption,is proved.Optimal order error estimates in L 2 and H1 norms are proved for the linear and semilinear elliptic problems.In the actual numerical calculation,the characteristic distance h does not appear explicitly in the parameterβintroduced by the Nitsche method.The theoretical results are confirmed numerically。 展开更多
关键词 Meshless method element-free Galerkin method Nitsche method semilinear elliptic problem error estimate
原文传递
NEUMANN PROBLEMS OF A CLASS OF ELLIPTIC EQUATIONS WITH DOUBLY CRITICAL SOBOLEV EXPONENTS 被引量:3
9
作者 韩丕功 《Acta Mathematica Scientia》 SCIE CSCD 2004年第4期633-638,共6页
This paper deals with the Neumann problem for a class of semilinear elliptic equations -△u + u =|u|2*-2u+ μ|u|q-2u in Ω, au/ar= |u|(?)*-2u on aΩ, where 2 = 2N/N-2, s=2(N-1)/N-2, 1 <q<2,N(?)3,μ>γ denotes... This paper deals with the Neumann problem for a class of semilinear elliptic equations -△u + u =|u|2*-2u+ μ|u|q-2u in Ω, au/ar= |u|(?)*-2u on aΩ, where 2 = 2N/N-2, s=2(N-1)/N-2, 1 <q<2,N(?)3,μ>γ denotes the unit outward normal to boundary aΩ. By vaxiational method and dual fountain theorem, the existence of infinitely many solutions with negative energy is proved. 展开更多
关键词 Neumann problem semilinear elliptic equation (PS)·c condition critical Sobolev exponent
下载PDF
Stabilization and control of subcritical semilinear wave equation in bounded domain with Cauchy-Ventcel boundary conditions 被引量:1
10
作者 A.Kanoune N.Mehidi 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第6期787-800,共14页
We analyze the exponential decay property of solutions of the semilinear wave equation in bounded domain Ω of R^N with a damping term which is effective on the exterior of a ball and boundary conditions of the Cauchy... We analyze the exponential decay property of solutions of the semilinear wave equation in bounded domain Ω of R^N with a damping term which is effective on the exterior of a ball and boundary conditions of the Cauchy-Ventcel type. Under suitable and natural assumptions on the nonlinearity, we prove that the exponential decay holds locally uniformly for finite energy solutions provided the nonlinearity is subcritical at infinity. Subcriticality means, roughly speaking, that the nonlinearity grows at infinity at most as a power p 〈 5. The results obtained in R^3 and RN by B. Dehman, G. Lebeau and E. Zuazua on the inequalities of the classical energy (which estimate the total energy of solutions in terms of the energy localized in the exterior of a ball) and on Strichartz's estimates, allow us to give an application to the stabilization controllability of the semilinear wave equation in a bounded domain of R^N with a subcritical nonlinearity on the domain and its boundary, and conditions on the boundary of Cauchy-Ventcel type. 展开更多
关键词 STABILIZATION exact controllability limit problems semilinear subcritical partial differential equations Cauchy-Ventcel
下载PDF
The Local Existence for Semilinear Wave Equations
11
作者 Yang Han(杨晗) +1 位作者 Lai Shaoyong(赖绍永) 《Journal of Southwest Jiaotong University(English Edition)》 2002年第2期134-138,共5页
The Cauchy problem for the semilinear wave equation has been studied and results show that the problem is locally well-posed in Hs ( Rn ) for s > max [ 0, n/2 - 1]. We extend the results by Lindblad in R3 to R2 and... The Cauchy problem for the semilinear wave equation has been studied and results show that the problem is locally well-posed in Hs ( Rn ) for s > max [ 0, n/2 - 1]. We extend the results by Lindblad in R3 to R2 and R1. The methods used in this paper are different from those of Lindblad and also the methods are more simple. 展开更多
关键词 semilinear wave equations Cauchy problem
下载PDF
H^(1)(R^(N))上带限制的半线性椭圆型特征问题的多解
12
作者 刘竞坤 范琦 《长春工业大学学报》 CAS 2023年第6期523-528,共6页
应用变分方法将H^(1)(R^(N))上带限制的半线性椭圆型特征问题转换为对应泛函在球面上的极值问题。以Z_(2)指标理论为依据,在对应偶泛函满足Palais-Smale条件的情况下,通过形变引理证明带限制的椭圆特征型问题多解的存在性。
关键词 半线性椭圆型特征问题 多解 PALAIS-SMALE条件 亏格 形变引理 Z_(2)指标理论
下载PDF
Discontinuous Galerkin Methods for Semilinear Elliptic Boundary Value Problem
13
作者 Jiajun Zhan Liuqiang Zhong Jie Peng 《Advances in Applied Mathematics and Mechanics》 SCIE 2023年第2期450-467,共18页
A discontinuous Galerkin(DG)scheme for solving semilinear elliptic problem is developed and analyzed in this paper.The DG finite element discretization is first established,then the corresponding well-posedness is pro... A discontinuous Galerkin(DG)scheme for solving semilinear elliptic problem is developed and analyzed in this paper.The DG finite element discretization is first established,then the corresponding well-posedness is provided by using Brouwer’s fixed point method.Some optimal priori error estimates under both DG norm and L^(2)norm are presented,respectively.Numerical results are given to illustrate the efficiency of the proposed approach. 展开更多
关键词 semilinear elliptic problem discontinuous Galerkin method error estimates
原文传递
带有变系数阻尼项的半线性波动方程解的衰减估计
14
作者 陈雪丽 曹德刚 杨晗 《西南民族大学学报(自然科学版)》 CAS 2023年第3期328-333,共6页
研究一类在全空间■上带有变系数阻尼项的半线性波动方程的Cauchy问题,考虑阻尼项中的变系数是只与时间相关的函数,同时考虑非线性项为|u|^(p-1 )u的情形.假设变系数满足一定条件使得研究问题中的阻尼项是有效的,并且假设初值具有紧支集... 研究一类在全空间■上带有变系数阻尼项的半线性波动方程的Cauchy问题,考虑阻尼项中的变系数是只与时间相关的函数,同时考虑非线性项为|u|^(p-1 )u的情形.假设变系数满足一定条件使得研究问题中的阻尼项是有效的,并且假设初值具有紧支集,利用乘子法以及解的有限传播速度性质来研究解的衰减性质,通过选取具体的乘子,得到了问题解的衰减估计. 展开更多
关键词 变系数半线性波动方程 CAUCHY问题 乘子法 衰减估计
下载PDF
一类具有非单调内层性态的半线性边值问题(英文) 被引量:14
15
作者 刘树德 徐华清 《应用数学》 CSCD 北大核心 2009年第3期631-636,共6页
本文运用内层校正方法和微分不等式理论研究了一类半线性边值问题.在一定的条件下,我们获得了两类非单调内层性态:尖层性态或非单调过渡层性态的解的一致有效复合展开式.
关键词 半线性问题 非单调内层性态 内层校正 复合展开式 微分不等式
下载PDF
半线性抛物方程的门槛结果(英文) 被引量:3
16
作者 戴求亿 顾永耕 +1 位作者 刘芳 谢君辉 《湖南师范大学自然科学学报》 CAS 北大核心 2011年第2期7-15,共9页
研究了半线性抛物方程的初边值问题.证明了它对应的稳态问题的任意正解是该抛物问题整体解存在与否的初值门槛(结论的精确表述见本文定理1).
关键词 初边值问题 半线性抛物方程 稳态问题 门槛结果
下载PDF
半线性问题的瀑布型多重网格法 被引量:5
17
作者 周叔子 祝树金 《应用数学》 CSCD 北大核心 2002年第3期136-139,共4页
本文提出了求解半线性椭圆问题的一类新的瀑布型多重网格法 。
关键词 半线性椭圆问题 瀑布型多重网格法 收敛性
下载PDF
一类具有混合边界条件的奇摄动半线性边值问题 被引量:2
18
作者 黄香蕉 刘树德 +1 位作者 龚灏 卢玉蓉 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第3期455-458,共4页
研究了一类具有混合边界条件的奇摄动二阶半线性边值问题.在构造形式渐近解的基础上,用微分不等式理论证明了解的存在性.并得出了解的任意阶的一致有效展开式.
关键词 混合边界 奇摄动 半线性 边值问题
下载PDF
三角形二次插值系数有限元法解半线性椭圆问题的超收敛性 被引量:2
19
作者 熊之光 陈传淼 《数学物理学报(A辑)》 CSCD 北大核心 2006年第2期174-182,共9页
基于均匀三角形的剖分求解一类二阶半线性椭圆问题,用插值系数有限元方法比经典有限元法更容易实现,与经典二次有限元一样,二次插值系数有限元方法在对称点处也有四阶超收敛精度,数值计算表明这些结论是正确的.
关键词 半线性椭圆问题 三角形二次元 插值系数 超收敛
下载PDF
奇异半线性发展方程组解的Blow-up问题 被引量:2
20
作者 郭高荣 平翠萍 杨凤藻 《昆明理工大学学报(理工版)》 2006年第6期122-124,共3页
讨论奇异半线性发展方程组解的B low-up问题时,通常先对解进行估计,然后讨论在一定条件下解的B low-up.论文继续用这种方法讨论奇异半线性发展方程组解的B low-up问题,得到一定条件下解会B low-up.
关键词 奇异 半线性 BLOW-UP问题
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部