The single crystal bismuth nanowire arrays grown along [0112] with the diameter of 30 nm was synthesized in the pore of anodic aluminum oxide templates through electrodeposi- tion process. The temperature dependent el...The single crystal bismuth nanowire arrays grown along [0112] with the diameter of 30 nm was synthesized in the pore of anodic aluminum oxide templates through electrodeposi- tion process. The temperature dependent electric conductance of Bi nanowire arrays was measured from 78 K to 320 K. We found that the semimetal-to-semiconductor transition happened around 230 K for 30 nm Bi nanowires oriented along [0112] and the electric con- ductance of the nanowires had a strong temperature dependence.展开更多
Transport characteristics of single crystal bismuth films on Si(111)-7×7 are found to be metallic or insulating at temperature below or above Tc, respectively. The transition temperature Tc decreases as the fil...Transport characteristics of single crystal bismuth films on Si(111)-7×7 are found to be metallic or insulating at temperature below or above Tc, respectively. The transition temperature Tc decreases as the film thickness increases. By combining thickness dependence of the films resistivity, we find the insulating behaviour results from the states inside film, while the metallic behaviour originates from the interface states. We show that quantum size effect in a Bi film, such as the semimetal-to-semiconductor transition, is only observable at a temperature higher than Tc.展开更多
文摘The single crystal bismuth nanowire arrays grown along [0112] with the diameter of 30 nm was synthesized in the pore of anodic aluminum oxide templates through electrodeposi- tion process. The temperature dependent electric conductance of Bi nanowire arrays was measured from 78 K to 320 K. We found that the semimetal-to-semiconductor transition happened around 230 K for 30 nm Bi nanowires oriented along [0112] and the electric con- ductance of the nanowires had a strong temperature dependence.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10874217 and 10427402)the National Basic Research Program of China(973 Program)(Grant No.2006CB933000)
文摘Transport characteristics of single crystal bismuth films on Si(111)-7×7 are found to be metallic or insulating at temperature below or above Tc, respectively. The transition temperature Tc decreases as the film thickness increases. By combining thickness dependence of the films resistivity, we find the insulating behaviour results from the states inside film, while the metallic behaviour originates from the interface states. We show that quantum size effect in a Bi film, such as the semimetal-to-semiconductor transition, is only observable at a temperature higher than Tc.