In this paper, we aim to introduce and study some basic properties of upper and lower <em>M</em>-asymmetric irresolute multifunctions defined between asymmetric sets in the realm of bitopological spaces wi...In this paper, we aim to introduce and study some basic properties of upper and lower <em>M</em>-asymmetric irresolute multifunctions defined between asymmetric sets in the realm of bitopological spaces with certain minimal structures as a generalization of irresolute functions deal to Crossley and Hildebrand <a href="#ref1">[1]</a> and upper and lower irresolute Multifunctions deal to Popa <a href="#ref2">[2]</a>.展开更多
In this paper, our focus is to introduce and investigate a class of mappings called M-asymmetric irresolute multifunctions defined between bitopological structural sets satisfying certain minimal properties. M-asymmet...In this paper, our focus is to introduce and investigate a class of mappings called M-asymmetric irresolute multifunctions defined between bitopological structural sets satisfying certain minimal properties. M-asymmetric irresolute multifunctions are point-to-set mappings defined using M-asymmetric semiopen and semiclosed sets. Some relations between M-asymmetric semicontinuous multifunctions and M-asymmetric irresolute multifunctions are established. This notion of M-asymmetric irresolute multifunctions is analog to that of irresolute multifunctions in the general topological space and, upper and lower M-asymmetric irresolute multifunctions in minimal bitopological spaces, but mathematically behaves differently.展开更多
文摘In this paper, we aim to introduce and study some basic properties of upper and lower <em>M</em>-asymmetric irresolute multifunctions defined between asymmetric sets in the realm of bitopological spaces with certain minimal structures as a generalization of irresolute functions deal to Crossley and Hildebrand <a href="#ref1">[1]</a> and upper and lower irresolute Multifunctions deal to Popa <a href="#ref2">[2]</a>.
文摘In this paper, our focus is to introduce and investigate a class of mappings called M-asymmetric irresolute multifunctions defined between bitopological structural sets satisfying certain minimal properties. M-asymmetric irresolute multifunctions are point-to-set mappings defined using M-asymmetric semiopen and semiclosed sets. Some relations between M-asymmetric semicontinuous multifunctions and M-asymmetric irresolute multifunctions are established. This notion of M-asymmetric irresolute multifunctions is analog to that of irresolute multifunctions in the general topological space and, upper and lower M-asymmetric irresolute multifunctions in minimal bitopological spaces, but mathematically behaves differently.