Let R be a ring with identity. We use J(R), G(R), and X(R) to denote the Jacobson radical, the group of all units, and the set of all nonzero nonunits in R, respectively. A ring is said to be Abelian if every id...Let R be a ring with identity. We use J(R), G(R), and X(R) to denote the Jacobson radical, the group of all units, and the set of all nonzero nonunits in R, respectively. A ring is said to be Abelian if every idempotent is central. It is shown, for an Abelian ring R and an idempotent-lifting ideal N J(R) of R, that H has a complete set of primitive idempotents if and only if R/N has a complete set of primitive idempotents. The structure of an Abelian ring R is completely determined in relation with the local property when X(R) is a union of 2, 3, 4, and 5 orbits under the left regular action on X(R) by G(R). For a semiperfect ring R which is not local, it is shown that if G(R) is a cyclic group with 2 ∈ G(R), then R is finite. We lastly consider two sorts of conditions for G(R) to be an Abelian group.展开更多
Let A be a(left and right) Noetherian ring that is semiperfect. Let e be an idempotent of A and consider the ring Γ :=(1-e)A(1-e) and the semi-simple right A-module Se := e A/e rad A. In this paper, we investigate th...Let A be a(left and right) Noetherian ring that is semiperfect. Let e be an idempotent of A and consider the ring Γ :=(1-e)A(1-e) and the semi-simple right A-module Se := e A/e rad A. In this paper, we investigate the relationship between the global dimensions of A and Γ, by using the homological properties of Se. More precisely, we consider the Yoneda ring Y(e) := Ext_A~*(Se, Se) of e. We prove that if Y(e) is Artinian of finite global dimension, then A has finite global dimension if and only if so does Γ. We also investigate the situation where both A and Γ have finite global dimension. When A is Koszul and finite dimensional, this implies that Y(e) has finite global dimension. We end the paper with a reduction technique to compute the Cartan determinant of Artin algebras. We prove that if Y(e) has finite global dimension, then the Cartan determinants of A and Γ coincide. This provides a new way to approach the long-standing Cartan determinant conjecture.展开更多
文摘Let R be a ring with identity. We use J(R), G(R), and X(R) to denote the Jacobson radical, the group of all units, and the set of all nonzero nonunits in R, respectively. A ring is said to be Abelian if every idempotent is central. It is shown, for an Abelian ring R and an idempotent-lifting ideal N J(R) of R, that H has a complete set of primitive idempotents if and only if R/N has a complete set of primitive idempotents. The structure of an Abelian ring R is completely determined in relation with the local property when X(R) is a union of 2, 3, 4, and 5 orbits under the left regular action on X(R) by G(R). For a semiperfect ring R which is not local, it is shown that if G(R) is a cyclic group with 2 ∈ G(R), then R is finite. We lastly consider two sorts of conditions for G(R) to be an Abelian group.
基金supported by an NSERC Discovery Grantsupported by the University of Connecticut and by the NSF CAREER grant (Grant No. DMS-1254567)
文摘Let A be a(left and right) Noetherian ring that is semiperfect. Let e be an idempotent of A and consider the ring Γ :=(1-e)A(1-e) and the semi-simple right A-module Se := e A/e rad A. In this paper, we investigate the relationship between the global dimensions of A and Γ, by using the homological properties of Se. More precisely, we consider the Yoneda ring Y(e) := Ext_A~*(Se, Se) of e. We prove that if Y(e) is Artinian of finite global dimension, then A has finite global dimension if and only if so does Γ. We also investigate the situation where both A and Γ have finite global dimension. When A is Koszul and finite dimensional, this implies that Y(e) has finite global dimension. We end the paper with a reduction technique to compute the Cartan determinant of Artin algebras. We prove that if Y(e) has finite global dimension, then the Cartan determinants of A and Γ coincide. This provides a new way to approach the long-standing Cartan determinant conjecture.