Icing is an important factor threatening aircraft flight safety.According to the requirements of airworthiness regulations,aircraft icing safety assessment is needed to be carried out based on the ice shapes formed un...Icing is an important factor threatening aircraft flight safety.According to the requirements of airworthiness regulations,aircraft icing safety assessment is needed to be carried out based on the ice shapes formed under different icing conditions.Due to the complexity of the icing process,the rapid assessment of ice shape remains an important challenge.In this paper,an efficient prediction model of aircraft icing is established based on the deep belief network(DBN)and the stacked auto-encoder(SAE),which are all deep neural networks.The detailed network structures are designed and then the networks are trained according to the samples obtained by the icing numerical computation.After that the model is applied on the ice shape evaluation of NACA0012 airfoil.The results show that the model can accurately capture the nonlinear behavior of aircraft icing and thus make an excellent ice shape prediction.The model provides an important tool for aircraft icing analysis.展开更多
针对分布式电源和新型负荷容量累积造成负荷影响因素多元化和不确定性特性增强的问题,文中提出一种采用记忆神经网络和曲线形状修正的负荷预测方法。在负荷峰值预测中,采用最大信息系数计算负荷峰值与影响因素的非线性相关性,实现对输...针对分布式电源和新型负荷容量累积造成负荷影响因素多元化和不确定性特性增强的问题,文中提出一种采用记忆神经网络和曲线形状修正的负荷预测方法。在负荷峰值预测中,采用最大信息系数计算负荷峰值与影响因素的非线性相关性,实现对输入特征的筛选;综合考虑负荷峰值序列的长短期自相关性和输入特征与负荷峰值的不同程度相关性,结合Attention机制和双向长短时记忆(bidirectional long short-term memory,BiLSTM)神经网络建立负荷峰值预测模型。在负荷标幺曲线预测中,通过误差倒数法组合相似日和相邻日,建立负荷标幺曲线预测模型;针对预测偏差的非平稳特征,利用自适应噪声的完全集成经验模态分解和BiLSTM网络建立误差预测模型,对曲线形状进行修正。应用中国北方某城市的区域电网负荷数据为算例,验证了所提模型的有效性。展开更多
High rigidity twenty-high Sendzimir mills (ZRMs) are widely used for rolling stainless steels, silicon sheets, etc. A ZRM uses a small diameter work roll to produce massive rolling forces. Since a work roll with a s...High rigidity twenty-high Sendzimir mills (ZRMs) are widely used for rolling stainless steels, silicon sheets, etc. A ZRM uses a small diameter work roll to produce massive rolling forces. Since a work roll with a small diameter can be bent easily, strips often have complex shapes with mixed quarter and deep edge waves in the shape of plates. In order to solve this problem, fuzzy neural network controls are generally used for shape: recognition in ZRM control systems. Among various neural network types, the multi-layer perceptron (MLP) is typically used in current ZRMs. However, an MLP causes the loss of a large amount of shape recognition data. To improve the shape recognition per- formance of ZRM control systems, echo state networks (ESNs) are proposed to be used. Through simulation re- sults, it is found that shape recognition performance could be improved using the proposed ESN method.展开更多
Aiming to reduce the high expense of 3-Dimensional(3D)aerodynamics numerical sim-ulations and overcome the limitations of the traditional parametric learning methods,a point cloud deep learning non-parametric metamode...Aiming to reduce the high expense of 3-Dimensional(3D)aerodynamics numerical sim-ulations and overcome the limitations of the traditional parametric learning methods,a point cloud deep learning non-parametric metamodel method is proposed in this paper.The 3D geometric data,corresponding to the object boundaries,are chosen as point clouds and a deep learning neural net-work metamodel fed by the point clouds is further established based on the PointNet architecture.This network can learn an end-to-end mapping between spatial positions of the object surface and CFD numerical quantities.With the proposed aerodynamic metamodel approach,the point clouds are constructed by collecting the coordinates of grid vertices on the object surface in a CFD domain,which can maintain the boundary smoothness and allow the network to detect small changes between geometries.Moreover,the point clouds are easily accessible from 3D sensors.The point cloud deep learning neural network,which employs re-sampling technique,the spatial transformer network and the fully connected layer,is developed to predict the aerodynamic char-acteristics of 3D geometry.The effectiveness of the proposed metamodel method is further verified by aerodynamic prediction and robust shape optimization of the ONERA M6 wing.The results show that the proposed method can achieve more satisfactory agreement with the experimental measurements compared to the parametric-learning-based deep neural network.展开更多
The quality assessment and prediction becomes one of the most critical requirements for improving reliability, efficiency and safety of laser welding. Accurate and efficient model to perform non-destructive quality es...The quality assessment and prediction becomes one of the most critical requirements for improving reliability, efficiency and safety of laser welding. Accurate and efficient model to perform non-destructive quality estimation is an essential part of this assessment. This paper presents a structured and comprehensive approach developed to design an effective artificial neural network based model for weld bead geometry prediction and control in laser welding of galvanized steel in butt joint configurations. The proposed approach examines laser welding parameters and conditions known to have an influence on geometric characteristics of the welds and builds a weld quality prediction model step by step. The modelling procedure begins by examining, through structured experimental investigations and exhaustive 3D modelling and simulation efforts, the direct and the interaction effects of laser welding parameters such as laser power, welding speed, fibre diameter and gap, on the weld bead geometry (i.e. depth of penetration and bead width). Using these results and various statistical tools, various neural network based prediction models are developed and evaluated. The results demonstrate that the proposed approach can effectively lead to a consistent model able to accurately and reliably provide an appropriate prediction of weld bead geometry under variable welding conditions.展开更多
基金supported in part by the National Natural Science Foundation of China(No.51606213)the National Major Science and Technology Projects(No.J2019-III-0010-0054)。
文摘Icing is an important factor threatening aircraft flight safety.According to the requirements of airworthiness regulations,aircraft icing safety assessment is needed to be carried out based on the ice shapes formed under different icing conditions.Due to the complexity of the icing process,the rapid assessment of ice shape remains an important challenge.In this paper,an efficient prediction model of aircraft icing is established based on the deep belief network(DBN)and the stacked auto-encoder(SAE),which are all deep neural networks.The detailed network structures are designed and then the networks are trained according to the samples obtained by the icing numerical computation.After that the model is applied on the ice shape evaluation of NACA0012 airfoil.The results show that the model can accurately capture the nonlinear behavior of aircraft icing and thus make an excellent ice shape prediction.The model provides an important tool for aircraft icing analysis.
文摘针对分布式电源和新型负荷容量累积造成负荷影响因素多元化和不确定性特性增强的问题,文中提出一种采用记忆神经网络和曲线形状修正的负荷预测方法。在负荷峰值预测中,采用最大信息系数计算负荷峰值与影响因素的非线性相关性,实现对输入特征的筛选;综合考虑负荷峰值序列的长短期自相关性和输入特征与负荷峰值的不同程度相关性,结合Attention机制和双向长短时记忆(bidirectional long short-term memory,BiLSTM)神经网络建立负荷峰值预测模型。在负荷标幺曲线预测中,通过误差倒数法组合相似日和相邻日,建立负荷标幺曲线预测模型;针对预测偏差的非平稳特征,利用自适应噪声的完全集成经验模态分解和BiLSTM网络建立误差预测模型,对曲线形状进行修正。应用中国北方某城市的区域电网负荷数据为算例,验证了所提模型的有效性。
基金Sponsored by Korea Science and Engineering Foundation(KOSEF)Funded by Korea Government(MEST)(2010-0022521)
文摘High rigidity twenty-high Sendzimir mills (ZRMs) are widely used for rolling stainless steels, silicon sheets, etc. A ZRM uses a small diameter work roll to produce massive rolling forces. Since a work roll with a small diameter can be bent easily, strips often have complex shapes with mixed quarter and deep edge waves in the shape of plates. In order to solve this problem, fuzzy neural network controls are generally used for shape: recognition in ZRM control systems. Among various neural network types, the multi-layer perceptron (MLP) is typically used in current ZRMs. However, an MLP causes the loss of a large amount of shape recognition data. To improve the shape recognition per- formance of ZRM control systems, echo state networks (ESNs) are proposed to be used. Through simulation re- sults, it is found that shape recognition performance could be improved using the proposed ESN method.
基金supported by the National Natural Science Foundation of China(No.52175214)the Basic Research Program of Equipment Development Department(No.514010103-302).
文摘Aiming to reduce the high expense of 3-Dimensional(3D)aerodynamics numerical sim-ulations and overcome the limitations of the traditional parametric learning methods,a point cloud deep learning non-parametric metamodel method is proposed in this paper.The 3D geometric data,corresponding to the object boundaries,are chosen as point clouds and a deep learning neural net-work metamodel fed by the point clouds is further established based on the PointNet architecture.This network can learn an end-to-end mapping between spatial positions of the object surface and CFD numerical quantities.With the proposed aerodynamic metamodel approach,the point clouds are constructed by collecting the coordinates of grid vertices on the object surface in a CFD domain,which can maintain the boundary smoothness and allow the network to detect small changes between geometries.Moreover,the point clouds are easily accessible from 3D sensors.The point cloud deep learning neural network,which employs re-sampling technique,the spatial transformer network and the fully connected layer,is developed to predict the aerodynamic char-acteristics of 3D geometry.The effectiveness of the proposed metamodel method is further verified by aerodynamic prediction and robust shape optimization of the ONERA M6 wing.The results show that the proposed method can achieve more satisfactory agreement with the experimental measurements compared to the parametric-learning-based deep neural network.
文摘The quality assessment and prediction becomes one of the most critical requirements for improving reliability, efficiency and safety of laser welding. Accurate and efficient model to perform non-destructive quality estimation is an essential part of this assessment. This paper presents a structured and comprehensive approach developed to design an effective artificial neural network based model for weld bead geometry prediction and control in laser welding of galvanized steel in butt joint configurations. The proposed approach examines laser welding parameters and conditions known to have an influence on geometric characteristics of the welds and builds a weld quality prediction model step by step. The modelling procedure begins by examining, through structured experimental investigations and exhaustive 3D modelling and simulation efforts, the direct and the interaction effects of laser welding parameters such as laser power, welding speed, fibre diameter and gap, on the weld bead geometry (i.e. depth of penetration and bead width). Using these results and various statistical tools, various neural network based prediction models are developed and evaluated. The results demonstrate that the proposed approach can effectively lead to a consistent model able to accurately and reliably provide an appropriate prediction of weld bead geometry under variable welding conditions.