We derive formulae of correction for multi-wave geometric spreading and absorption in layered viscoelastic media, this provides the theoretical foundation for true amplitude compensation of field data and for our sens...We derive formulae of correction for multi-wave geometric spreading and absorption in layered viscoelastic media, this provides the theoretical foundation for true amplitude compensation of field data and for our sensitivity analysis. The imaging matrix at a plane reflector between viscoelastic media can be determined in the frequency domain using linearized reflection coefficients through Born approximation. We quantitatively analyze the sensitivity by studying eigenvalues and eigenvectors of the imaging matrix. The results show that two linear combinations of petrophysical parameters can be determined from the multi-wave AVO inversion in the case of amplitude compensation. Multi-wave AVO contains the information of attenuation in the media. However, the sensitivity of multi-wave AVO inversion to attenuation is small.展开更多
A concept of hierarchical stiffened shell is proposed in this study, aiming at reducing the imperfection sen- sitivity without adding additional weight. Hierarchical stiffened shell is composed of major stiffeners and...A concept of hierarchical stiffened shell is proposed in this study, aiming at reducing the imperfection sen- sitivity without adding additional weight. Hierarchical stiffened shell is composed of major stiffeners and minor stiff- eners, and the minor stiffeners are generally distributed between adjacent major stiffeners. For various types of geo- metric imperfections, e.g., eigenmode-shape imperfections, hierarchical stiffened shell shows significantly low imper- fection sensitivity compared to traditional stiffened shell. Furthermore, a surrogate-based optimization framework is proposed to search for the hierarchical optimum design. Then, two optimum designs based on two different opti- mization objectives (including the critical buckling load and the weighted sum of collapse loads of geometrically imperfect shells with small- and large-amplitude imperfections) are compared and discussed in detail. The illustrative example demonstrates the inherent superiority of hierarchical stiffened shells in resisting imperfections and the effectiveness of the proposed framework. Moreover, the decrease of imperfection sensitivity can finally be converted into a decrease of structural weight, which is particularly important in the development of large-diameter launch vehicles.展开更多
In tensor theory, the parallel factorization (PARAFAC)decomposition expresses a tensor as the sum of a set of rank-1tensors. By carrying out this numerical decomposition, mixedsources can be separated or unknown sys...In tensor theory, the parallel factorization (PARAFAC)decomposition expresses a tensor as the sum of a set of rank-1tensors. By carrying out this numerical decomposition, mixedsources can be separated or unknown system parameters can beidentified, which is the so-called blind source separation or blindidentification. In this paper we propose a numerical PARAFACdecomposition algorithm. Compared to traditional algorithms, wespeed up the decomposition in several aspects, i.e., search di-rection by extrapolation, suboptimal step size by Gauss-Newtonapproximation, and linear search by n steps. The algorithm is ap-plied to polarization sensitive array parameter estimation to showits usefulness. Simulations verify the correctness and performanceof the proposed numerical techniques.展开更多
Diamond is a highly suitable material for X-ray detectors that can function effectively in harsh environments due to its unique properties such as ultrawide bandgap,high radiation resistance,excellent carrier mobility...Diamond is a highly suitable material for X-ray detectors that can function effectively in harsh environments due to its unique properties such as ultrawide bandgap,high radiation resistance,excellent carrier mobility as well as remarkable chemical and thermal stability.However,the sensitivity of diamond X-ray detectors needs further improvement due to the relatively low X-ray absorption efficiency of diamond,and the exploration of singlecrystal diamond array imaging still remains unexplored.In the current work,a 10310 X-ray photodetector array was constructed from single-crystal diamond.To improve the sensitivity of the diamond X-ray detector,an asymmetric sandwich electrode structure was utilized.Additionally,trenches were created through laser cutting to prevent crosstalk between adjacent pixels.The diamond X-ray detector array exhibits exceptional performance,including a low detection limit of 4.9 nGy s^(-1),a sensitivity of 14.3 mC Gy^(-1) cm^(-2),and a light-dark current ratio of 18,312,which are among the most favorable values ever reported for diamond X-ray detectors.Furthermore,these diamond X-ray detectors can operate at high temperatures up to 450℃,making them suitable for development in harsh environments.展开更多
The remodeling of root architecture is a major developmental response of plants to phosphate (Pi) deficiency and is thought to enhance a plant's ability to forage for the available Pi in topsoil. The underlying mec...The remodeling of root architecture is a major developmental response of plants to phosphate (Pi) deficiency and is thought to enhance a plant's ability to forage for the available Pi in topsoil. The underlying mechanism controlling this response, however, is poorly understood. In this study, we identified an Arabidopsis mutant, hps 10 (hypersensitive to Pi starvation 10), which is morphologically normal under Pi sufficient condition but shows increased inhibition of primary root growth and enhanced production of lateral roots under Pi defi- ciency, hpslO is a previously identified allele (als3-3) of the ALUMINUM SENSITIVE3 (ALS3) gene, which is involved in plant tolerance to aluminum toxicity. Our results show that ALS3 and its interacting protein AtSTAR1 form an ABC transporter complex in the tonoplast. This protein complex mediates a highly electro- genic transport in Xenopus oocytes. Under Pi deficiency, als3 accumulates higher levels of Fe3+ in its roots than the wild type does. In Arabidopsis, LPR1 (LOW PHOSPHATE ROOT1) and LPR2 encode ferroxidases, which when mutated, reduce Fe3+ accumulation in roots and cause root growth to be insensitive to Pi defi- ciency. Here, we provide compelling evidence showing that ALS3 cooperates with LPR1/2 to regulate Pi deficiency-induced remodeling of root architecture by modulating Fe homeostasis in roots.展开更多
In this paper,a primary model is established for MD(molecular dynamics) simulation for the PBXs(polymer-bonded explosives) with RDX(cyclotrimethylene trinitramine) as base explosive and PS as polymer binder.A series o...In this paper,a primary model is established for MD(molecular dynamics) simulation for the PBXs(polymer-bonded explosives) with RDX(cyclotrimethylene trinitramine) as base explosive and PS as polymer binder.A series of results from the MD simulation are compared between two PBX models,which are represented by PBX1 and PBX2,respectively,including one PS molecular chain having 46 repeating units and two PS molecular chains with each having 23 repeating units.It has been found that their structural,interaction energy and mechanical properties are basically consistent between the two models.A systematic MD study for the PBX2 is performed under NPT conditions at five different temperatures,i.e.,195 K,245 K,295 K,345 K,and 395 K.We have found that with the temperature increase,the maximum bond length(L max) of RDX N N trigger bond increases,and the interaction energy(E N-N) between two N atoms of the N-N trigger bond and the cohesive energy density(CED) decrease.These phenomena agree with the experimental fact that the PBX becomes more sensitive as the temperature increases.Therefore,we propose to use the maximum bond length L max of the trigger bond of the easily decomposed and exploded component and the interaction energy E N-N of the two relevant atoms as theoretical criteria to judge or predict the relative degree of heat and impact sensitivity for the energetic composites such as PBXs and solid propellants.展开更多
Cloud storage is widely used in massive data outsourcing, but how to efficiently query encrypted multidimensional data stored in an untrusted cloud environment remains a research challenge. We propose a high performan...Cloud storage is widely used in massive data outsourcing, but how to efficiently query encrypted multidimensional data stored in an untrusted cloud environment remains a research challenge. We propose a high performance and privacy-preserving query(p LSH-PPQ) scheme over encrypted multidimensional data to address this challenge. In our scheme, for a given query, the proxy server will return K top similar data object identifiers. An enhanced Ciphertext-Policy Attribute-Based Encryption(CP-ABE)policy is used to control access to the search results. Therefore, only the requester with the permission attribute can obtain correct secret keys to decrypt the data. Security analysis proves that the p LSH-PPQ scheme achieves data confidentiality and reserves the data owner's privacy in a semi-trusted cloud. In addition, evaluations demonstrate that the p LSH-PPQ scheme can significantly reduce response time and provide high search efficiency without compromising on search quality.展开更多
基金The study is supported by National Project 863 (No. 820-05-02-03).
文摘We derive formulae of correction for multi-wave geometric spreading and absorption in layered viscoelastic media, this provides the theoretical foundation for true amplitude compensation of field data and for our sensitivity analysis. The imaging matrix at a plane reflector between viscoelastic media can be determined in the frequency domain using linearized reflection coefficients through Born approximation. We quantitatively analyze the sensitivity by studying eigenvalues and eigenvectors of the imaging matrix. The results show that two linear combinations of petrophysical parameters can be determined from the multi-wave AVO inversion in the case of amplitude compensation. Multi-wave AVO contains the information of attenuation in the media. However, the sensitivity of multi-wave AVO inversion to attenuation is small.
基金supported by the National Basic Research Program of China(2014CB049000,2014CB046506)the Project funded by China Postdoctoral Science Foundation(2014M551070)+2 种基金the National Natural Science Foundation of China(11372062,91216201,11128205)the Fundamental Research Funds for the Central Universities(DUT14RC(3)028)the LNET Program(LJQ2013005)
文摘A concept of hierarchical stiffened shell is proposed in this study, aiming at reducing the imperfection sen- sitivity without adding additional weight. Hierarchical stiffened shell is composed of major stiffeners and minor stiff- eners, and the minor stiffeners are generally distributed between adjacent major stiffeners. For various types of geo- metric imperfections, e.g., eigenmode-shape imperfections, hierarchical stiffened shell shows significantly low imper- fection sensitivity compared to traditional stiffened shell. Furthermore, a surrogate-based optimization framework is proposed to search for the hierarchical optimum design. Then, two optimum designs based on two different opti- mization objectives (including the critical buckling load and the weighted sum of collapse loads of geometrically imperfect shells with small- and large-amplitude imperfections) are compared and discussed in detail. The illustrative example demonstrates the inherent superiority of hierarchical stiffened shells in resisting imperfections and the effectiveness of the proposed framework. Moreover, the decrease of imperfection sensitivity can finally be converted into a decrease of structural weight, which is particularly important in the development of large-diameter launch vehicles.
基金supported by the National Natural Science Foundation of China(61571131)the Technology Innovation Fund of the 10th Research Institute of China Electronics Technology Group Corporation(H17038.1)
文摘In tensor theory, the parallel factorization (PARAFAC)decomposition expresses a tensor as the sum of a set of rank-1tensors. By carrying out this numerical decomposition, mixedsources can be separated or unknown system parameters can beidentified, which is the so-called blind source separation or blindidentification. In this paper we propose a numerical PARAFACdecomposition algorithm. Compared to traditional algorithms, wespeed up the decomposition in several aspects, i.e., search di-rection by extrapolation, suboptimal step size by Gauss-Newtonapproximation, and linear search by n steps. The algorithm is ap-plied to polarization sensitive array parameter estimation to showits usefulness. Simulations verify the correctness and performanceof the proposed numerical techniques.
基金financially supported by the National Key R&D Program of China(2022YFB3608604)Science and Technology Major Project of Henan Province(231100230300)+3 种基金Science and Technology on Plasma Physics Laboratory(JCKYS2021212010)National Natural Science Foundation of China(U21A2070,12274373)Key Research and Development Project of Henan Province(231111232100)Natural Science Foundation of Henan Province(242300421155).
文摘Diamond is a highly suitable material for X-ray detectors that can function effectively in harsh environments due to its unique properties such as ultrawide bandgap,high radiation resistance,excellent carrier mobility as well as remarkable chemical and thermal stability.However,the sensitivity of diamond X-ray detectors needs further improvement due to the relatively low X-ray absorption efficiency of diamond,and the exploration of singlecrystal diamond array imaging still remains unexplored.In the current work,a 10310 X-ray photodetector array was constructed from single-crystal diamond.To improve the sensitivity of the diamond X-ray detector,an asymmetric sandwich electrode structure was utilized.Additionally,trenches were created through laser cutting to prevent crosstalk between adjacent pixels.The diamond X-ray detector array exhibits exceptional performance,including a low detection limit of 4.9 nGy s^(-1),a sensitivity of 14.3 mC Gy^(-1) cm^(-2),and a light-dark current ratio of 18,312,which are among the most favorable values ever reported for diamond X-ray detectors.Furthermore,these diamond X-ray detectors can operate at high temperatures up to 450℃,making them suitable for development in harsh environments.
文摘The remodeling of root architecture is a major developmental response of plants to phosphate (Pi) deficiency and is thought to enhance a plant's ability to forage for the available Pi in topsoil. The underlying mechanism controlling this response, however, is poorly understood. In this study, we identified an Arabidopsis mutant, hps 10 (hypersensitive to Pi starvation 10), which is morphologically normal under Pi sufficient condition but shows increased inhibition of primary root growth and enhanced production of lateral roots under Pi defi- ciency, hpslO is a previously identified allele (als3-3) of the ALUMINUM SENSITIVE3 (ALS3) gene, which is involved in plant tolerance to aluminum toxicity. Our results show that ALS3 and its interacting protein AtSTAR1 form an ABC transporter complex in the tonoplast. This protein complex mediates a highly electro- genic transport in Xenopus oocytes. Under Pi deficiency, als3 accumulates higher levels of Fe3+ in its roots than the wild type does. In Arabidopsis, LPR1 (LOW PHOSPHATE ROOT1) and LPR2 encode ferroxidases, which when mutated, reduce Fe3+ accumulation in roots and cause root growth to be insensitive to Pi defi- ciency. Here, we provide compelling evidence showing that ALS3 cooperates with LPR1/2 to regulate Pi deficiency-induced remodeling of root architecture by modulating Fe homeostasis in roots.
基金supported by the National Key Laboratory of Shock Wave and Detonation Physics,Institute of Fluid Physics,China Academy of Engineering Physics(076100-1197F)the Defence Industrial Technology Development Program(B1520110002)the State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology(KFJJ09-5)
文摘In this paper,a primary model is established for MD(molecular dynamics) simulation for the PBXs(polymer-bonded explosives) with RDX(cyclotrimethylene trinitramine) as base explosive and PS as polymer binder.A series of results from the MD simulation are compared between two PBX models,which are represented by PBX1 and PBX2,respectively,including one PS molecular chain having 46 repeating units and two PS molecular chains with each having 23 repeating units.It has been found that their structural,interaction energy and mechanical properties are basically consistent between the two models.A systematic MD study for the PBX2 is performed under NPT conditions at five different temperatures,i.e.,195 K,245 K,295 K,345 K,and 395 K.We have found that with the temperature increase,the maximum bond length(L max) of RDX N N trigger bond increases,and the interaction energy(E N-N) between two N atoms of the N-N trigger bond and the cohesive energy density(CED) decrease.These phenomena agree with the experimental fact that the PBX becomes more sensitive as the temperature increases.Therefore,we propose to use the maximum bond length L max of the trigger bond of the easily decomposed and exploded component and the interaction energy E N-N of the two relevant atoms as theoretical criteria to judge or predict the relative degree of heat and impact sensitivity for the energetic composites such as PBXs and solid propellants.
基金Supported by the National Natural Science Foundation of China(61303029)
文摘Cloud storage is widely used in massive data outsourcing, but how to efficiently query encrypted multidimensional data stored in an untrusted cloud environment remains a research challenge. We propose a high performance and privacy-preserving query(p LSH-PPQ) scheme over encrypted multidimensional data to address this challenge. In our scheme, for a given query, the proxy server will return K top similar data object identifiers. An enhanced Ciphertext-Policy Attribute-Based Encryption(CP-ABE)policy is used to control access to the search results. Therefore, only the requester with the permission attribute can obtain correct secret keys to decrypt the data. Security analysis proves that the p LSH-PPQ scheme achieves data confidentiality and reserves the data owner's privacy in a semi-trusted cloud. In addition, evaluations demonstrate that the p LSH-PPQ scheme can significantly reduce response time and provide high search efficiency without compromising on search quality.