期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
The Analysis of Angle Resolution of Stress Vector Sensor Based on Optical Fiber Sensing Cable for High Speed Railway Traffic
1
作者 邓顺戈 马鑫 李新碗 《Journal of Shanghai Jiaotong university(Science)》 EI 2018年第1期61-65,共5页
With the development of high speed railway traffic, the structure health monitoring for high-speed rail is necessary due to the safety issue. Optical fiber sensing technology is one of the options to solve it. Stress ... With the development of high speed railway traffic, the structure health monitoring for high-speed rail is necessary due to the safety issue. Optical fiber sensing technology is one of the options to solve it. Stress vector information is the important index to make more reasonable judgments about railway safety. However, information sensed by lots of commercial optical sensors is scalar. According to the stress filed distribution of rail, this paper proposes a new type of stress vector sensor based on optical fiber sensing cable(OFSC) with a symmetrical seven optical fibers structure and analyzes the relations between angle resolution and distance between adjacent of optical fibers through finite-element software(ANSYS) simulation. Through reasonable distance configuration, the angle resolution of the OFSC can be improved, and thus stress vector information, including the stress magnitude and the angle of stress, can be more accurately obtained. The simulation results are helpful to configure OFSC for angle resolution improvement in actual practice, and increase the safety factor in high speed railway structure health monitoring. 展开更多
关键词 optical fiber sensing cable RAIL angle resolution stress finite element analysis
原文传递
Remote condition monitoring of rail tracks using distributed acoustic sensing(DAS):A deep CNN-LSTM-SW based model
2
作者 Md Arifur Rahman Suhaima Jamal Hossein Taheri 《Green Energy and Intelligent Transportation》 2024年第5期70-85,共16页
Railroad condition monitoring is paramount due to frequent passage through densely populated regions.This significance arises from the potential consequences of accidents such as train derailments,hazardous materials ... Railroad condition monitoring is paramount due to frequent passage through densely populated regions.This significance arises from the potential consequences of accidents such as train derailments,hazardous materials leaks,or collisions which may have far-reaching impacts on communities and the surrounding areas.As a solution to this issue,the use of distributed acoustic sensing(DAS)-fiber optic cables along railroads provides a feasible tool for monitoring the health of these extended infrastructures.Nevertheless,analyzing DAS data to assess railroad health or detect potential damage is a challenging task.Due to the large amount of data generated by DAS,as well as the unstructured patterns and substantial noise present,traditional analysis methods are ineffective in interpreting this data.This paper introduces a novel approach that harnesses the power of deep learning through a combination of CNNs and LSTMs,augmented by sliding window techniques(CNN-LSTM-SW),to advance the state-of-the-art in the railroad condition monitoring system.As well as it presents the potential for DAS and fiber optic sensing technologies to revolutionize the proposed CNN-LSTM-SW model to detect conditions along the rail track networks.Extracting insights from the data of High tonnage load(HTL)-a 4.16 km fiber optic and DAS setup,we were able to distinguish train position,normal condition,and abnormal conditions along the railroad.Notably,our investigation demonstrated that the proposed approaches could serve as efficient techniques for processing DAS signals and detecting the condition of railroad infrastructures at any remote distance with DAS-Fiber optic cable setup.Moreover,in terms of pinpointing the train's position,the CNN-LSTM architecture showcased an impressive 97%detection rate.Applying a sliding window,the CNN-LSTM labeled data,the remaining 3%of misclassified labels have been improved dramatically by predicting the exact locations of each type of condition.Altogether,these proposed models exhibit promising potential for accurately identifying various railroad conditions,including anomalies and discrepancies that warrant thorough exploration. 展开更多
关键词 Distributed acoustic sensing(DAS)-Fiber optic cable Railroad condition monitoring and anomaly detection High tonnage load(HTL) Convolutional neural network-long short-term memory-sliding window(CNN-LSTM-SW)
原文传递
DFOS Applications to Geo-Engineering Monitoring 被引量:7
3
作者 Bin SHI Dan ZHANG +6 位作者 Honghu ZHU Chengcheng ZHANG Kai GU Hongwei SANG Heming HAN Mengya SUN Jie LIU 《Photonic Sensors》 SCIE EI CSCD 2021年第2期158-186,共29页
Optical fiber sensing technology has developed rapidly since the 1980s with the development of the optical fiber and fiber optical communication technology.It is a new type of sensing technology that uses light as a c... Optical fiber sensing technology has developed rapidly since the 1980s with the development of the optical fiber and fiber optical communication technology.It is a new type of sensing technology that uses light as a carrier and optical fiber as a medium to sense and transmit external signals(measurands).Distributed fiber optical sensors(DFOS)can continuously measure the external physical parameters distributed along the geometric path of the optical fiber.Meanwhile,the spatial distribution and change information of the measured physical parameters over time can be obtained.This technology has unmatched advantages over traditional point-wise and electrical measurement monitoring technologies.This paper summarizes the state-of-the-art research of the application of the distributed optical fiber sensing tech no logy in geo-engineering in the past 10 years,mainly including the advantages of DFOS,the challenges in geo-engineering monitoring,related fundamental theoretical issues,sensing performance of the optical sensing cables,distributed optical fiber monitoring system for geo-engineering,and applications of optical fiber sensing technology in geo-engineering. 展开更多
关键词 Distributed fiber optical sensors(DFOS) geo-engineering sensing cables applications monitoring
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部